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Presentation

Short BIO:

————
_—
- Graduated in Telecommunications
— Engineering in 2019 in University of Padova.
- More than 1year in the field of Al and
Machine Learning applications in HealthTech
Technologies.

- From 2019, Machine Learning Engineer in
Cambridge at Focal Point Positioning .

Experience:

Contacts:

- Machine Learning for eHealth:
- Unsupervised Anomaly Detection
- Sensors Fusion

M E-mail: mat.cip43@gmail.com

m Linkedin: Matteo Ciprian

- Deep learning: :
: . cip_mat
- Geometrical Deep learning P

Personal Website:
https://www.matteociprian.com/

c
=
m
>
i
n
p -
e
0
c
@
0p)



https://www.matteociprian.com/
mailto:mat.cip43@gmail.com
https://www.linkedin.com/in/matteo-ciprian-ba30ab122/
https://www.instagram.com/cip_mat/

Goals of the course

Theory

= Explaining the basis of Sensors Fusion and providing a big picture of the entire
“Sensors Fusion Universe”.

= Exploring the main frameworks and techniques used in the Sensors Fusion
domain (with a bit of Machine Learning) for eHealth.

Practice

= Understanding main applications of Sensors Fusion eHealth

= Discussing about the limits and future development of Sensors Fusion in eHealth
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Added value of this course

R TARGET AUDIENCE:

- Novel researchers in the field of Sensors
Fusion, Data Science or eHealth
technologies

- R&D tech employee working in
companies in the field of eHealth, Internet
of Things and robotic.

. ' 0-5"_._— - Product managers and/or investors
/I\!w o~ interested in the opportunities,
Technology applications and challenges of Sensors
BUSINESS Fusion in eHealth. (ONLY SECOND PART)

Sensors Fusion




Outline

Part 1: State of Art of Sensors Fusion
= What is Sensors Fusion?
Why we need Sensors Fusion
Different categories of Sensors Fusion Techniques
State Estimation Techniques:
e Kalman Filters
Decision Fusion Techniques:
* Bayesian Inference (Bayesian Network)
* Dempster-Shafer

Part 2: Sensors Fusion in eHealth

= Main Applications

= Why we need it

= Sensors Fusion Vs Sensors Integration
= Sensors Integration Systems

» Practical Projects and Applications

* Requirements, Limits and Issues
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What is Sensors Fusion

e Wikipedia Definition: Sensors fusion is the process of combining sensory data or data
derived from disparate sources such that the resulting information has less uncertainty
than would be possible when these sources were used individually.

e A “better” Definition (JDL) :“Sensors Fusion” can be defined as an ensemble of
techniques that combine data from multiple sensors and related information to achieve
improved accuracy and more specific inferences than could be achieved by the use of a
single sensor.

W C— system StatTe

Sensor occe \ero\+1 on

sensor



https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Information

~ ) What is Sensors Fusion: a scheme
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Sensor

data 1 Sensor 3
—
processor 1
Sensor i _
data 2 Sensor Fusion X St Action
——— > >
processor 2 processor y
Sensor
data N Sensor
» processor N A

Brain
(CPU)

Sensory
Input

SCHEME:

A sensors fusion system is
characterized by multiple inputs
(data) that are processed by a
fusion engine or fusion processor.

BRAIN:

Our brain IS a fusion engine or
better it contains multiple fusion
engines.



:} Why we need Sensors Fusion

=3

e Try to blind yourself and you will understand why.

—

e “Single stream of Sensors Data coming is usually not sufficient for having a good and
reliable assessment of the external world”.
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) Why we need Sensors Fusion

» Sensors Deprivation: The breakdown of a sensor element causes a loss of perception on
the desired object.

» Limited spatial coverage: Usually an individual sensor only covers a restricted region.

* Imprecision: Measurements from individual sensors are limited to the precision of the
employed sensing element.

* Uncertainty: Uncertainty, in contrast to imprecision, depends on the object being
observed rather than the observing device. Uncertainty arises when features are missing
(e.g, occlusions), when the sensor cannot measure all relevant attributes of the percept, or
when the observation is ambiguous. A single sensor system is unable to reduce
uncertainty in its perception because of its limited view of the object.
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Sensors Fusion Example

TASK: we want to estimate the parameter g using an accelerometer on a table.

PROBLEM: Each measurement is affected by noise. If we use two accelerometers and we average
the measurements we are able to reduce the noise.

NOTE:

Just by averaging 4 measurements given by 4 different accelerometers we are able to half the noise
(If the noise signal is uncorrelated on the other).

uncelrme |aaTeo
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~) Main fields of application

1) Navigation systems (self-driving car)

Qs
go“’oq; .
Y écJ//
RADAR &
SENSORS 7
———————— 3 \OA& 2 /
(((( )))>
VIDEO ULTRASONIC
CAMERA SENSOR
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) Main fields of application

— 2) Virtual Reality — Motion Capture
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__) Main fields of application

— 3) Robotic Motion and Control
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__) Main fields of application

4) E-health and Telemedicine

_~ 7 BANT™ __ User Interaction

Interface

Black Box

Remote Access

Physician

Blood Pressure EEG P
Sensor Sensor \*28.} / \ : ‘
[ - \ ( \ \
J DMU ‘
Pulse Oximetry Inertial \ ' || Collect \ \
Sensor Sensor \ _ [ . : Medical |
[ - - ’ ‘| | Filter Information
‘. , ! 7 Database
| \ . Analyze iﬁ.’.‘
| } | Decision ;-

\
gl |
| 2 o

Emergency
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__) The objects of Sensors Fusion

————
_— -
—_———
Signal/Raw Data
P
D— ebodio ﬁ\»ﬁ—' >—A7]
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Sensor Signal Processing Feature Decision High level
Module Vector Module Information
Decision
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Example: Self-Driving Car

Videocamera Accelerometers
Sensor
Fusion

FUSED:Velocity,
A 4 Position

from an obstacle
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) Criteria for dividing Sensors Fusion Techniques

Different criteria can be used to divide the different Sensors Fusion techniques:

1. Target
2. Relationship between the type of data sources
3. Types of data Input/Out

4. Type of Architecture
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) Criteria 1: Target

e State Estimation:
Determining the value of a state in a given system.
o Example: Estimating the position of a car.

o Data-Association:
In a cluttered environment there are many objects to be measured. In
many context we don't know which object has generated an observation.
Therefore we need to associate each measurement to the object which
has generate it.

e Decision Fusion:
Fusing different decisions (classifications). .
o Example: Combining the diagnosis of two different doctors : what
is the final diagnosis?
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Complementary:

when the information provided
by the input sources represents
different parts of the scene and
could thus be used to obtain
more complete global
information.

Redundant:

when two or more input sources
provide information about the
same target and could thus be
fused to increment the
confidence.

Cooperative:

when the provided information is

combined into new information
that is typically more complex
than the original information

) Criteria 2: Relationship among data sources

Fused
information

Complementary
fusion

Redundant
fusion

Cooperative
fusion

A

¢

FIGURE 1: Whyte’s classification based on the relations between the data sources.

@ Sources
(@ c
C

Information
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Criteria 3: Data Input/Output

Data

Data in-data out
(DAI-DAO)

Data

Data in-feature out
(DAI-FEO)

Features
—_—>

Features

—

Feature in-feature out
(FEI-FEO)

Features
—

—_—

Features

s

Feature in-decision out
(FEI-DEO)

Decisions
é

_

Decisions
%

Decision in-decision out
(DEI-DEO)

Decisions

FIGURE 2: Dasarathy’s classification.



~ ) Criteria 5: Architecture

— Centralized:
S Centralized architectute In a centralized architecture, the fusion node
State resides in the central processor that receives
——— B i the information from all of the input sources.
() e | e Assocaon | | Betmaton Therefore, all of the fusion processes are
executed in a central processor that uses the
@ provided raw measurements from the sources
Decenrlizedarhiecure s Decentralized:
@ Preprocessing| | Alignment || 2110 a decentralized architecture is composed of a
sate pra | F— @ — network of n_odes in W.h.IC.h each node has its
object_| own processing capabilities and there is no

Association Estimation

- single point of data fusion. Therefore, each
Preprocessing| | Alignment || ofthe node fuses its local information with the
@ object . ) . ) .
information that is received from its peers. Data
fusion is performed autonomously, with each
node accounting for its local information and
Distributed architecture the information received from its peers.

O Preprocessing| | Alignment
S1

Association Estimation

Association Estimation

Distributed:
usion node ate . . H H
T R - ofthe in a distributed architecture,
reprocessing gnmen object
@ Ay Assocation | | Esimation - measurements from each source node are
Association Estimation

processed independently before the
information is sent to the fusion node;

Preprocessing| | Alig
Sn

Association Estimation
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Example: Self-Driving Car
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Presence and position of | |
an obstacle

FUSED:
Velocity,
Position

'
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Not danger
situation
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Fused
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A) Velocity + position estimation
- State estimation
- Complementary
- DataIN - Feature OUT

B) Velocity + position estimation (2)
- State estimation
- Complementary
- Feature IN - Feature OUT

C) Danger Situation Assessment
- Decision Fusion
- Redundant
- Decision IN - Decision OUT



c
=
m
>
i
n
p -
e
0
c
@
0p)

") Sensors Fusion in Data Science

e Sensors Fusion belongs to a wider set which is
usually referred as information fusion.

e Artificial Intelligence and Sensors Fusion can be
both referred as data-sciences techniques.

e The distinction between Machine Learning and
Information Fusion is blurred and some techniques
are common between these two big sets.

e However:

o Machine Learning is based on the idea that

Information
Fusion

Sensors
Fusion

systems can learn from (past) data, identifying
patterns and correlations.

o Sensors Fusion do not involve the so-called
“learning from past data” paradigm.

Bayesian
Statistics, ...

Information ® Atrtificial
Fusion Intelligence
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) State estimation techniques

State estimation techniques aim to determine the state of a stystem which can be obtained from the
analytical or empirical models of the sensors.

This set techniques include a quite large number :

* Linear Kalman filter (KF)

* Extended Kalman filter (EKF)

* Maximum Likelihood and Maximum Posterior
* Particle filter

* Interacting multiple model (IMM) filter




ML and MAP estimator

uncolre |aTeo

aL(eleromeJTeF

TASK: Estimating the constant of gravity. - rgf—li .
X=g r ]

WHAT WE HAVE:
- two accelerometers
- Observations z=(z_1,z_2)

- noise description ( observer description)

zZ1=g+n vy ~ N(0,0%)
29 = g+ va vy ~ N(0,0%)
1) »(Zlg) =

1 1 (z _ g>2 likelihood probability
exp | ——= C .
ovom 2 o definition

X (k) = arg m;txp(z | x) 2) —log[L(g)] = —log[p(z1|9) - p(22]9)] = log-Likelihood

1) ML ESTIMATOR :

¢ 01_2(;:1 _ g)2 +02—2(z2 —g)2 + cost minimization
2) MAP ESTIMATOR:
If we know the distribution of the state 01‘2 -z1+ 02‘2 - 29 MLE estimator
p(x) then we can use the: 3) gMLE =

0;2 + 052
X (k) = argmax p (x | z) , o
X since we suppose g as a deterministic parameter and
constant in time, we know its distribution so the MAP
estimator and the ML estimator are the same
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) Linear Kalman Filter

WHAT DOES A KALMAN FILTER DO:

B, douren system State

u[k] _senser occelerotion

The goal of the Kalman filter is to take a
probabilistic estimate of the state and update N distonce
it in real time using two steps; prediction and e ‘
correction.

WHAT WE HAVE: - -
Linear system equation

o state observer ( or measurement model): .r[k + ]] — A,,.r[k] i Bqu[k]
basically what we can measure of the
state x. y[k] = C,z[k] + Dyulk]
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e Input signals u[k] : measurable through
a set of sensors

Motion model: X, =Fi_ X1 + G ju + Wy
e amodel: tell us how the states evolve in
time with respect to the previous state Measurement mods!: Yie = Hix, + v,
and an input signals (u[k]). o




") Linear Kalman Filter

e w_k: Process Noise: Uncertainty on the

The problem : the noise model.
e v_k : Measurement Noise: Uncertainty on the
measure.
Motion model: X, = Fi_ X + G juy_ Hwi v~ N(0,R) w~ N(0,Q)
input  |noise c? ~ Gl
Measurement model: v, = Hyx, 68.3% of
nnico /‘ all values
1 I
1 1 .
® 1 1 N
©,__ 0 To

TASK: we want to estimate the position of a car.

We can write the u/k], x[k], y[k] as below:. R

- ufk] = acceleration = a[k] PDF

- x[k] = [velocity , position] = (v[k], p[k])
- ylk] = position = p[k] [ GPS] .

& Position(p)
P ) o o
d-p
X = (lp_, u=da=——
5 P dr-
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~ ) Linear Kalman Filter

1) PREDICTION: a[k] is measurable through a first set of sensors s_1. We can write a model that

connect the state x[k-1] and the state x[k] through the cinematic laws.

With this model we can calculate the position x[k].

PDF

N P

Estimate at (k - 1)

Prediction
(Motion Model)

e.g.,
wheel odometry,
inertial navigation

Position(p)

Motion/Process Model
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2. Measurement
1. Predictio
N ( Xy P,\ D (X P,\ N (Y Ry
ﬁ Prediction Measurement
Estimate at (k - 1) (Motion Model) (Observation Model)

eg.,
wheel odometry,
inertial navigation

e.g., GPS,
Lidar

Position(p)

0

Ui 4 Wi
Al k—1 k-1

| At
Xk=[0 l]xk_|+

2) MEASUREMENT: Through a second set of sensors s_2 ( GPS ) we can measure the position.

Position Observation

.\‘/\‘ — I l ()] Xk + \'k



__) Linear Kalman Filter : the equations

3) UPDATE STEP: At each time k, we - . /\-\ AT T "A\\
estimate the state x[k] by combining | | /] |7 - ’/ \ y \
the position MEASURED (observed) H P HE B | /G HOuR) Position(p)
position and the position calculated by
the model. o O
OVERALL

Model i/\ = Fk_lxk_l + Gk_lllk_l
prediction
Update ik == ik + Kl[yl L Hkil\4
Step
Corrected state Correction
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__) Kalman Filter in eHealth (1)

e Almost everything related to motion tracking with inertial units.

Motion Tracking in VR ( rehabilitation ) Sport monitoring
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__) Kalman Filter in eHealth (1)

weses @ @Goal: A real-time filtering system based T
. . Wy
— on an adaptive Kalman filter approach M
that separates N
O signal off-sets (C_k), el Breathing
O respiratory (X_s) and Ao fioait
O heart signals (X s1 | Adaptive
f g ( _f) 52 Kal Offset S1
rom Eilter Offset S2
O three different sensor channels ziG
(magnetic induction sensors). Reference
Figure 1 Kalman filter sensor fusion. Kalman filter sensor fusion (sensors: S1 to 53 with flow and PPG references) and vital signs extraction with
frequency adaptation.

Raw Magnetic Impedance Sensor Signal

Sensor 3 PAPER

An adaptive Kalman filter approach
for cardiorespiratory signal
extraction and fusion of

6 Sensor 1 Sensor 2

= non-contacting sensors

S,

g Jerome Foussier1*, Daniel Teichmann1, Jing Jia2,
@ Berno Misgeld1 and Steffen Leonhardt1

5 Of

5
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K 1 At 0 0 000
Xk = Axyx_1 +Bug_1 +wik_1 Vik —w?At 1 0 0 0 0 O
Xo 0 0 1 At 000 hj1 0 hey 0 1 0 O
Xk = (‘/{11; A= 8 8 —w(s)At (1] (1) g 8 H=(hf2 0 hsp 0 0 1 0
e = Bpad+ vi Ol O 0 0 0 010 hys 0 hey 00 0 1
Cs i 0 0 0 0 0 0 1
Raw Magnetic Impedance Sensor Signal SinUSOidaI MOdEI
61 Sensor 1 Sensor 2 Sensor 3
dX(t)
c k- X(t+ At) = X (t) + At Frane AtV (t)
- dv(t
@) 3 LM V(t+ At) zV(lt)—i—AtJ
O mmm— ‘a dt
- g O : \ . _ X(t) = sin(w - t)
W %it) = —w? sin(w-t) = —w? - X(t)
p -
(Vg
c




__) Kalman Filter in eHealth (3)
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Rate [bpm]

Rate [min]

120 |=— Heanadaptive non-adaptive —l

2

601
40 60 80 100 120 140
Subject 1
251
| Resp adaptive Resp non-adaptive Flow

15

10

40 60 80 100 120 140

Time [s]

Normalized signal [a.u.]

Normalized signal [a.u.]

Timeseries sample for Kalman estimates — DS setting

==X ¢ —
| f,adaptive f,non—adaptive PPG

40 45 50 55 60

Subject 1
2 .
| Xs,adaptive s,non-adaptive Flow |
1 -

LAY

—-1r
40 45 50 55 60
Time [s]

Normalized signal [a.u.]

Normalized signal [a.u.]

2
| Xf,adaptive f,non-adaptive PPG |
-2
-3 . " : .
40 45 50 55 60
Subject 2
2
| Xs,adaptive s,non—adaptive Flow |
1t
5 W\/\/
¥ /\/\f/\/\
-3 . . . )
40 45 50 55 60

Time [s]
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) Decision Fusion Techniques

e Decision = Classification

e Decision fusion is one form of data fusion that combines the decisions of multiple classifiers

e Example:

D1: You have a cancer.

Sensor 1 e

Sensor n

into a common decision.

D2: You don’t have a cancer.
What is the final solution?

Combining the diagnosis of two doctors.

State classification 1/
Decision 1

N

ST

Fused classification/
Fused Decision

e Instead of fusing features or signals, we compute an assessment for each sensor (classification)
and then we fuse them.

State classification n/
Decision n

e

Y

Logic

Final
Decision
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) Bayesian Inference and Bayes Networks

Bayes Inference in Decision Fusion: Determine
the value of a categorical state X, given some
evidences (different sensors data) that we can
measure.

Bayesian Networks (BN) : Application of the
bayes rule for a time evolving system.

Input:
a) Each sensors provides categorical states
b) Likelihood distribution P(E_i|X)

c) OPTIONAL: Transition state probability
P(X_t]X_t-1) (not necessary for all the
bayesian networks but really useful for
Hidden Markov model) .v

Output
An estimation of the value of the state X at time t
(X_t)

likelihood prior
posterior A A
A

P(datalhypothesis) P(hypothesis)

P(data)
L p—

evidence

P(hypothesis|data) =

b) @ E{= evidence variable i at the time instant
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Case Study:
* Domain: Ambient Sensing

* Goal: determine if a useris occupying a
room in that moment

e State definition:

X ={0=non in the room,1=inthe room}

e |nput Sensors:

1. E1: Door-Sensor -> { 0,1,2}

={Locked, closed,opened}

2. E2: SW-Sensor -> {0,1}

3.  E3:Sound-Sensor -> {0,1}
= {Occupancy, Not Occupancy}

PAPER: Multi-sensor fusion through adaptive bayesian

network
Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re, and Marco
Ortolani

) Bayesian Inference : case study

Ambient Sensing

® Motion
® Dpoor

® vibration
® Pressure

-
X 1 ® w( >®_User-in-Roomg,, ¥
User-in-Room((_J L t

=

[SW— Sensor

5

Sound-Sensor

™ E|

Door-Status i
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The target:

Finding the value of the state at time k which maximize a belief calculated on

the state x_t:

) Bayesian Inference :

= P(x¢|E1, E, .

Bel(x;) = P(z:|e], €2, ..
- ,Et) = P(mtlEl : t)

n 1 .2 n
iy B ys el €hps s s 560 )

The final state is calc

X; = argmax Bel(X; = i)
1€{0,1}

ulated:

Bel(X, =1)=0.7

Bel(X, =0) = 0.3




Step 1: Training

Dataset

Y

Bayesian Inference : 2 steps =

P(E}|X;), P(E2|X:) and P(E3|X;) .

E¢ E{ || Ef
oj1]2]0[1]0]1
0.5]0.3]0.2[[0.9]0.1][0.6]0.4
1[/0.1]0.1]0.8]/0.4/0.6]]0.2]0.8

(=]

Xt

Table 2. CPTs for sensor models:

Table 1. CPT for state transition:

P(Xe|X:_1).
X¢
01
0]/0.8]0.2
Xe-1f7 0.2/0.8
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. likelihood prior
posterior

P(data|hypothesis) P(hypothesis)
P(data) ’

rmm——— —
P(hypothesis|data) =

Step 2: Prediction

Bella,) = Plogler et o i s €Ty s onilh; €50 1 5 36F)
=5 P(:Et|E1,E2, cee ,Et) = P(:BtlEl : t)

Assuming Markov hypothesis

Bel(z;) =7 H P(ejlxs) - Y P(x|we1)Bel(we-1)

X
€t

X; = argmax Bel(X; = i)
i€{0,1}

t=0 t=1
[Ella E%’ E%] = [27 1, 1]
Bel(Xl) =< 0.906,0.094 >

X:=0




) The Dempster-Shafer Inference
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What DST is used for : DST provides a framework for combining different sources of
evidence into a global belief for a given hypothesis.

Problem with Bayes: Very difficult to compute the likelihood P(E|X) and the priori
probabilities P(X).

DIFFERENCE with Bayesian Inference:

- We can model the uncertainty : assigning a value to the probability of the
system to be in none of the states or in more than one state at the same time.

- It provides a different and simpler way to combine to combine different sources of
information.

Mass Probability function
This is done by function called mass function , m()

0 = {Xo, Xiyon; X} m : 2% — [0, 1]
2Q = {(Z)a{XOL . 'a{XN}){X07X1}7"a{XO,- XN}} Azznm(A) =1



Example: We want to determinate the level of
“fatigue” of an athlete using a set of sensors. We
define the level of fatigue of the athlete (X_i) based
on the following table.

e  oxygen saturation in blood sensor (SPO2),
e airflow sensor (spirometer-based)
e  body temperature sensor (PTC),

e  galvanic skin response sensor (skin conductance) (GSR)

PAPER :

Cost-Effective eHealth System Based on a Multi-Sensor System-on-Chip Platform and
Data Fusion in Cloud for Sport Activity Monitoring
(https://www.mdpi.com/2079-9292/7/9/183)

c
¢ (7) BPM/SPO2 (%) | Temp. (°C)| GSR (V) Air Ampl. (V)/Rate (bps)
- i 120-220/85-90 | 36.5-38.2 2.0-25 >1.7/>0.6
™ X 90-120/90-95 | 362-375 | 11-19 08-1.7/03-06
Xs 70-90/95-98 35.1-37.1 0.5-1.8 0.5-1.4/0.4-0.6
ﬂ X2 60-70/98-100 35.1-37.1 0.3-0.8 0.3-1.1/0.2-0.4
O x;,  40-60/98-100 35.1-37.1 0.1-0.5 0.3-0.6/0.1-0.4
n
c
Q

) The Dempster-Shafer Inference: case study
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) Credibility and Plausibility

4 . Credibility (or Belief) Plausibility
The credibility of the hypothesis A is the sum of The plausibility of the hypothesis A is an upper
the mass functions of all the evidence that bound of the confidence interval, which
supports A: all and only the subsets of the accounts for all the observations that do not rule
hypothesis A. out the given proposition.

Bel(A) = ¥ m(B) PI(A)= ), 6 m(B)

BCA BNA+D

m({X3}) = 0.05, m({ X3, X4}) = 0.05,m({X4}) = 0.2,
Example: ., rx.1) = 0.3, m({Xs, X5}) = 0.4

Bel({ X3, X4}) = m({Xs}) + m({X4}) + m({Xs, Xa}) = 0.3 PI({X3, X4})|= m({Xs}) + m({Xs}) + m({Xs, X4}) + m({ Xy, X5}) = 0.4
Bel({Xs}) = 0.05 PI({Xs})|= m({Xs, X4}) + m({X5}) = 0.1

Bel({X4}) = m({X4}) =02 Pl{X4})|= m({Xs, Xa}) +m({Xs}) +m({X4, X5}) = 0.05+0.240.1 = 0.35
Bel({Xs}) = m({Xs}) = 0.3 PI({X5}) = m({X5}) + m({X4, X5}) = 0.7
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Bel({X4, X5}) = m({X5}) + m({X4}) + m({X4, X5}) =0.24+0.3+0.4=0.9 PU{ Xy, X5 D= m({ X3, Xa}) + m({Xs}) + m({Xa}) + m({ Xy, X5}) = 0.95




—) The Dempster-Shafer Inference: combination
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Sensor 1 Def. of
m i
m

Combination
done by
Dempster's
orthogonal sum

\

P

[SensorS ’ ' Def. of J/\

Decision
Logic

2 xny-m M (X)m, (Y)

i &y (H) = 1= Y xay=p ™ (X)m, Y)

Fusion
Result

E; = arg max Bel(E;)

1<i<r

With the formula represented in the “fusion step”, we can combine the mass function of each

single sensor s_17..s_8 to get a final mass function.

From this mass function we can then build the “belief” of the system on a single state and
choosing the state which has the highest belief or highest plausibility.



~ ) Sensors Fusion in eHealth
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~ ) What is eHealth?
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Wz

P-Health ‘&
bucsoraliet  Mobile ADPS Telemedicine

health including
wearables end
implantable

sensors M-Health

1
Clinical information systems

(2]

|ntegrated netWOI’kS Electronic Health Records

. B
Adapted from “E-Health: A position statement of the European %i

Soclety of Cardlology” Cowle et al. 20162

Domains
of

e-Health

E-prescribing

Source:
e-Health: a position statement of the European Society of Cardiology

Martin R. Cowie, Jeroen Bax, Nico Bruining, John G. F. Cleland, Friedrich Koehler, Marek Malik, Fausto Pinto, Enno van der Velde, Panos Vardas



__) Sensors Fusion in eHealth : main applications
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MAIN

APPLICATION

Remote patient monitoring

Sport Monitoring




) Sensors Fusion in eHealth : why

From an operative point of view all the tasks/issues related to the application of Information
Technology in eHealth can be categorized in two main groups:

o State Estimation / Classification

 Anomaly Detection

WHY :

* Improving the accuracy of the system in detecting and correct classifying a given
state.

» Consistent detection of some health/non health states are not possible only using
one sensor ( one source of information) but only if we FUSE the information of many
SEeNsors.

» Avoiding centralized architectures.
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__) Example in Smart Watches
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Electrical Sensors (ECG)

[ 76 BPM

22sec

It tores

10:09 |

Optical Sensors ( PPG, SpO2)

Inertial Sensors

-

Use case of Sensors Fusion for Anomaly Detection:

©)

©)

O

Measuring heart parameters with ECG, PPG, SpQO2 sensors.
Assessing user activity through Inertial Sensors

Fusing the two informations to spot heart anomalies .




__) Real Life applications
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The Apple Watch Saved This Young

Apple Watch saves motorcyclist's life after hit- Man's Life. Tim Cook's Responselsa
and-run Powerful Lesson

Apple Watch saves life of 62-year-old
man suffering heart attack
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) Sensors Fusion # Sensors Integration

* Sensors Fusion is usually confused with the Sensors Integration.
This is absolutely wrong. Sensors Integration is necessary for Sensors
Fusion but it is not sufficient.

SENSORS INTEGRATION :

« EXAMPLE: An eHealth platform collect data from a SpO2
oximeter (oxygen saturation) and Portable ECG. The health
parameters are tracked and sent to a care provider (clinician)
which monitors the values on standard output.

SENSORs FUSION:

« EXAMPLE: A eHealth platform which collects data from a SpO2
oximeter and Portable ECG, fuse the two data and send to the
care-provider the heart status of a patient ( Normal, critical,
Heartbreak)..
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i

__) Sensors Integration Systems

Sensors Integration Systems incorporate
WBAN (Wireless Body Area Network) + cloud

N —

service which collect and process the data
measured by the sensors.

Such systems are divided usually divided in Tier
1,2,3.

In Sensors Fusion domain, Tier 2 is usually
referred as mDCS or “mobile data collection
system”.

- |f the fusion occurs a Tier1 /2 level, so
inside the mDCS, we can have a
Distributed Architecture.

- If the fusion occurs a Cloud level, so in
the cloud, we can have a Centralized
Architecture.
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Sensors Integration Systems

— * In the eHealth market, the main players which Integration of the integrators
provides services in the field of Sensors Fusion
and Integration are : p2Health project is a Sensor fusion platform
o o created by researchers of University of Rostock
*  Litbit Cloud (partnership with google) which is able to integrate different mDCS and also a

e |HealthLabs: iIHealthLabs Cloud
* Apple: Apple Health

These services integrate proprietary devices PAPER: https://pubmed.ncbi.nim.nih.gov/31687017/
and also third-part devices.

database with medical records.

Our ranges —
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__) Structure, Subj
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__) Smart Assisted Living
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Goal:

Spotting health and behavioural anomalies in a
smart home environment which monitor senior
people.

Target user:
- Senior People
- Fragile People
- People living alone

Type of sensors:
- Environmental sensors (PIR)
- Wrist mounted watch
- Textile sensors



Sport Monitoring

PAPERs:

https://sportsmedicine-open.springeropen.com/articles/10
.1186/s40798-022-00432-z

https://www.mdpi.com/2079-6374/10/12/205/htm

e Goal:

— o Performance assessment: Using different sensors to

estimate the level of performances of a movement
or a sport act.

e Target user:

o Medium level to professional athlete
o Rehabilitation patient

e Type of sensors:

o ECG sensors

o IMU Sensors

o Electrochemical sensor for skin and sweat analysis

Eyewear 10 assist sleep/ Skin patches

wakefulness ¥ %

Smart garments

T o O\

\ , Inertial measure unit

Smarl watches

giomechanical /
shoe insoles

Headbands

Mobile and Tablet
applications

o Wearable textile-based sensors on dress and shoes

o EMG sensors

@)

Wearable pulse oximeter
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https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00432-z
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00432-z
https://www.mdpi.com/2079-6374/10/12/205/htm

__) Patient monitoring and diagnostic
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Level 0: Parameter level tracking
Just integration system, each sensors
decoupled from the others

Level 1: Anomaly detection and alarm
detection
Detection of particular anomalous status such
as
loss of conscience, car accidents etc.
- Smart watch sensors (ECG, IMU, SpO2)
- Require minimal access to the clinical
story of the patient.

Level 2: Advanced and pervasive
diagnostic early detection of general
diseases and general health problems.

o Integration with biochemical sensors

o Complete access to the clinical story of

the patient.
PAPER:

https://www.researchgate.net/publication/305788092_A_Framewor

k_of Sensor-based_Monitoring_for_Pervasive_Patient_Care



https://www.researchgate.net/publication/305788092_A_Framework_of_Sensor-based_Monitoring_for_Pervasive_Patient_Care
https://www.researchgate.net/publication/305788092_A_Framework_of_Sensor-based_Monitoring_for_Pervasive_Patient_Care

Requirements for designing a Sensors Integration System:

*  POWER CONSUMPTION: low computational
consumption for battery saving and time of
execution;

* SECURITY: high data security and inteqgrity;

* AUTOMATIZATION: automatic data processing,
minimizing the human intervention.

*  SIMPLICITY : simple and intuitive system handling
(usability);
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__) Challenges
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STANDARDIZATION: There is not a clear standardization of the
stack to connect the customer (patient) to the care provider
(clinician).

RAW DATA AVAILABILITY: Sensors Manufacturers usually are
not (basically never) the entity which provides Sensors Fusion and
Integration systems. Most of the time only higher level data are
available for the system integrator.

WEARABLE SENSORS are user dependent. In many scenarios we
cannot rely only on them.




) Future Developments of SF in eHealth

* Technological:
* Combining Sensors Fusion And Deep Learning in the feature extraction phase.

« With higher and higher data availability Bayesian Networks will gain momentum
especially for patient monitoring.

* Practical:
* A new standard for exchanging raw data and features among sensors.
« Sensors Integration Systems targeted to the the context.

Sport Monitoring # Elderly Care.
PS: As a general rule, the fewer sensors your user have to wear, the better)).
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