
Thought Recognition through EEG signals
Ciprian Matteo, Corniani Giulia, Mariotti Ettore

Department of Information Engineering, Università degli Studi di Padova, Italy

Abstract—In this paper, we propose a method to classify
yes/no answers to simple questions, based on electroen-
cephalographic (EEG) signals. We used the signals ac-
quired in several sessions on a single patient in Completely
Locked In State due to ALS disease and therefore unable
to communicate. After a signals processing phase for the
extraction of features, SVM classifiers were built achieving
good performances in the distinction of the patient’s
thought. The low computational weight and the low num-
ber of signals initially required for the construction of the
classifiers make this method suitable for online application
with possible great benefits in the quality of life of patients
affected by this disease.

I. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a neurological
degenerative disease that mainly involves the nerve cells.
Both the upper motor neurons and the lower motor
neurons degenerate or die, and stop sending messages to
the muscles. In this condition, muscles gradually weaken,
start to twitch, and waste away until the brain loses
its ability to initiate and control voluntary movements.
People affected by neurodegenerative disease such as
ALS end up in a completed locked in state (CLIS)
in which movements and communication become im-
possible. Nonetheless, cognitive abilities are intact and
different studies prove that quality of life in these people
can be good and is strongly positively correlated with the
possibility of communicating.

Previous works, such as [1], showed the possibility of
designing a Brain-Computer Interface that allows basic
communication, distinguishing yes and no thoughts of
the patient. This kind of systems can use both non-
invasive or invasive data acquisition instrumentation.

In our case, only non-invasive techniques were
used: electroencephalography (EEG), electrooculogra-
phy (EOG), electromyography (EMG) and functional
near-infrared spectroscopy (fNIRS).
In a session, the patient answers 20 questions (10 yes
+ 10 no answer in a random sequence). The questions
allow only a yes or no response and the answers are
assumed to be known. The questions are sampled from
a set built with the help of the patient family. Each

session is approximately 10 minutes long and 28 signals
are simultaneous acquired using different techniques, in
particular:

• 15 fNIRS signals
• 5 EEG signals
• 4 EOG signals
• 4 EMG signals

In our work, we analyze the data acquired during differ-
ent sessions and different days of acquisition.

The state of the art results of such a system uses a
support vector machine (SVM) on the fNIRS dataset
while using EEG just for asserting a vigilant state. The
average performances of SVM+fNIRS achieved a 70%
of classification accuracy. The non-excellent efficiency
of this system allows to ask the patient only general
question, mainly about his daily routine preferences
but is still inappropriate for sensitive issues, such as
decisions on the end of life, a significant topic for people
in this situation.

In our work, we decided to use only EEG signals.
EMG and EOG signals were discarded for the short-
term results they can ensure. Indeed, due to the quick
degeneration of the disease, the patient is destined to
lose the use of the jaw muscles and the eyes move,
activities which were recorded with these techniques.
Consequently, classifiers built using these signals would
lose accuracy with the evolution of the disease. No
techniques have been implemented to integrate the in-
formation coming from the EEG and fNIRS signals,
therefore the fNIRS signal was not used because alone
it results less informative than the other.

Starting from the extraction and selection of features,
we set an SVM classifier to discriminate between yes
and no signals.

II. METHODS

A. Dataset

The data analyzed in this work were acquired over
seven days. Every day, a number ranging from 2 to 4
sessions, each composed of 20 question (10yes/10no),
were performed.



The EEG electrodes were placed in the position
C5, C6, FC5, FC6, and Cz of the international 10-20
system for electroencephalography electrode placement.
The sampling frequency is 500Hz.

For further information about the data acquisition see
[1]

B. Signal Filtering

First of all the drift of the signal was removed using
the Matlab function detrend which removes a linear
trend from a vector. The signal was processed using a
passband Chebyshev Type II filter. In particular, after the
visual inspection of the power spectrum and according
to the physiological characteristics of EEG signals, the
bandpass was set from 0.1 Hz to 30 Hz with 150 dB
attenuation in the stop-bands. The filter was initially de-
signed using the Matlab function cheb2ord, which set
the filter order, and cheby2. Finally, with the function
zp2sos, the zero-pole model of the filter was converted
into a second-section form to improve the stability.

The filtering procedure was applied to the entire
signals which were then segmented and labeled into
yes/no instances using a trigger signal.

C. Feature Extraction Approach

The purpose of this phase is to calculate a number
of features able to well characterize the signals under
examination. For this goal, we used a MATLAB library
developed for the analysis of EEG in neonatal intensive
care, described in [2]. Despite the different application
area, it resulted suitable for the extraction of useful fea-
tures to describe our signals. The features extracted can
be divided into four main categories: range, amplitude,
spectral and connectivity.

• Amplitude features: characterization of the signals
in the time domain. Amplitude is quantified by
signal power and signal envelope. Also, the Gaus-
sianity of the process is evaluated with skewness
and kurtosis.

• Range features: range EEG (rEEG) is an alternative
representation of EEG signals in the time domain. In
particular, rEEG estimates a peak-to-peak measure
of voltage. Range features, extracted from rEEG,
summarizes their trends with different measures.

• Spectral features: quantification of the spectral char-
acteristic of the signals starting from the Power
Spectral Density (PSD).

• Connectivity features: measures of the connectivity
and symmetry between the two hemispheres. These

features are estimated using the symmetric channels
C5, C6 and FC5, FC6.

All the features, apart from the spectral difference and
the spectral edge frequency, are estimated within four
different frequency bands of the EEG: [0.5-4; 4-7; 7-13;
13-30] Hz.
It is also fair to mention that in the three first categories
(Range, Amplitude, Spectral) there are Single-Channel-
Features which are calculated independently for each of
the five acquisition channels. Conversely, the connectiv-
ity features are Multiple-Channel-Features since they are
calculated considering the signals of the channels C5,
C5, FC5 and FC6 jointly. This determined the structure
of the features matrix.

D. Feature Selection

As described in the introduction each dataset is com-
posed of n binary question with known answer (which
we call instances). For each instance we have a total of
386 of different features all concatenated in a single row,
thus our features dataset is represented by a n × 386
matrix which we call full features dataset. Not all the
features carry useful information for our classification
goal thus it is important to develop a computationally
feasible automatic algorithm able to understand what is
the subset that yields the best performances. A brute
force approach is indeed impractical because it would
require to test

∑386
k=1

(
386
k

)
≈ 1.57 ∗ 10116 different

combinations.
In order to reduce this number, a score was given to

each feature using ANOVA F-test. Using this, only the
top k features with the highest score were selected. It
was then defined a new k-reduced dataset of size n× k.

For assessing the best value of k it is necessary to
better define what we mean for “best performances”.
Given our specific problem, it is important to maximize
the generalization accuracy of our classifier with the
least number of train instances. Thus we choose to keep
the smallest k that, given a particular classifier, would
yield the highest validation accuracy on the test set while
training on few instances.We proceeded with our work so
that we could best mimic the real experimental scenario.
The dataset is divided into two groups: training (Xtr) and
testing (Xte) sets. This first partitioning is made keeping
track of the historical sequence of the questions. Every
parameter is computed on Xtr, leaving untouched every
data point of the Xte. For the evaluation of the various
parameters the set Xtr is randomly splitted in a sub-
training set (Xsub−tr) and a validation set (Xval). Given
the scarcity of data, in order to have stable estimates



of the scores we perform many (500) of these random
sub-training/validation partitions. The procedure can be
summarized as follows:

1) Split the full features dataset in Xtr and Xte sets
2) Generate 500 random partition of Xtr as Xi

sub−tr

and Xi
val, for i = 1, ..., 500

3) For each k going from 1 to the maximum number
of features do:

4) Compute the ANOVA F-test score statistics on
Xi

sub−tr

5) Reduce Xi
sub−tr and Xi

val to have k features and
call them Xi,k

sub−tr and Xi,k
val, (using the reducer

parameters computed on point 4)
6) Fit the classifier on the train set Xi,k

sub−tr and
estimate the validation performances on Xi,k

val. Call
the validation score αk

i

7) Return αk as the average of the scores for each i,
in other words αk = 1/500

∑
i α

k
i .

8) return kbest = min(argmaxk α
k)

E. Classifier

We used a Support Vector Machine (SVM) with
linear kernel and penalty term C=1 as classifier. For
numerical and technical reasons, before using the SVM,
we standardized the data centering each feature to have
null mean and unit variance. The parameters for the
standardization were computed on Xtr and propagated
to the Xte.

III. RESULTS

In this section, the results are presented.
We can divide our analysis into two phases:
• Single-Day Dataset (Dataset zero): we worked on

a single-day dataset: considering the experimental
setup explained above, we tested our model splitting
the dataset into different training/test portions and
assessing the evolution of accuracy.

• Six-Days Dataset: using the dataset acquired in six
consecutive days, we both analyzed the generaliza-
tion properties of the built classifier, and built a
different classifier for each day.

A. Single-Day Dataset Analysis

1) Feature selected: The optimal number of feature
for our dataset resulted in k = 60; in particular, the
features selected are reported in the in the appendix A.

As we can deduce from histogram reported in Figure
1, most of the feature selected (43 of 60) are calculated
in the two lower frequencies bands ([0.5-4; 4-7]Hz).
Regarding the contribution of the different channels to
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Fig. 1: Histogram of the selected features belonging to
each sub-band

Selected features in each channel 
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Fig. 2: Histogram of the selected features belonging to
each channel

representative features, as shown in Figure 2, channel
C5, C6, FC5, and FC6 contribute quite equally while Cz
seems to be the least informative channels with 7 of 60
features brought.

None of the connectivity features was selected for the
classification.

2) Classifier performances: In Figure 3 are presented
the accuracy results for different train/test partition size.
For each train/test fraction, the accuracy of 10’000
randomly sampled datasets were computed: each point
is the mean and each error bar represent the standard
deviation of the distribution.
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Fig. 3: Performances of the SVM with k = 60 with
different train/test size on Dataset zero. Each point
represent the mean of the results on 10’000 random
partition and the error bar represent its standard deviation

Even though the SVM is always in over-fitting, it does
indeed present very good generalization performances on
our dataset with few training samples. This is a very
desirable property in a real-application scenario.

Moreover, the SVM is extremely fast in both training
and computing predictions and is memory efficient as
it only requires a subset of the training points in the
decision function (also called support vectors), so the
hardware requirement for the classification are minimal.

B. Six-Days Dataset Analysis

1) Classifiers performance: For each day of acquisi-
tion, a different classifier was built trying to reproduce
the experimental conditions. For this reason, the dataset
of each day was divided into training and test sets ac-
cording to the chronological order of signal acquisition.
All the useful parameters for the construction of the
classifier were then calculated using only the signals
contained in the training set, which correspond to the
first signals acquired each day, as explained in detail in
section II.

In Table I the results obtained and the selected k with
two different training and test partitions are reported. It
can be observed that the classifiers achieve very different
performances on different days. For example, the classi-
fier built with data of the day 5 using only 2 sessions for
the train, is able to correctly classify 100% of the signals,
while the classifier built with the same procedure on the
data of day 2 reaches much lower performance. This is
probably due to different psychophysical states in which

TABLE I: Results of the whole procedure made in an
experimental-like setting: Fixed the training dataset Xtr

keeping the chronological order of the questions, the best
k is searched and the performances are computed on the
untouched test-set Xte

Dataset Size Score (tr/te 50%) kopt Score (tr/te 75%) kopt

Day 0 60 100% 66 100% 52
Day 1 80 62.5% 9 85% 72
Day 2 80 52.5% 30 50% 35
Day 3 40 50% 21 60% 33
Day 4 80 67.5% 22 85% 41
Day 5 60 95% 94 100% 63
Day 6 80 85% 42 85% 33

the patient was on the days of acquisition and which
obviously cannot be modified to improve the success of
the experiment.

2) Classifier generalization ability: Initially, the clas-
sifier built on the Single-Day dataset was used to classify
the Six-Days dataset signals. The results obtained were
very poor, with a classification accuracy not exceeding
50%. This is justifiable as the brain morphology and
activation could have changed in the period after the
acquisition of the first dataset, which dates back to a
period much earlier than the second one.

Subsequently, the same approach was used with the
Six-Days dataset signals: for example, with the data of
day 1 a classifier was built and then used to classify the
data of day 2. Although in this case the signals were
acquired at a short time distance (min. 24 hours, max 5
days), the accuracy of the classification was always lower
than 70%. This means that the method implemented
in this work requires that in each session the patient
is initially asked a series of questions with a known
answer with which to create a new classifier. Only after
this phase, it would be possible to proceed with open
questions.

IV. CONCLUSIONS

In general, the proposed procedure leads to good
results in the classification of signals analyzed. The
main problem can be identified in the great variability
of performance achieved using the datasets of different
days. indeed, while on the one hand the results obtained
can be considered excellent, on the other some classifiers
are unusable to proceed with open questions, the ultimate
goal of the system. We were not able to explain this
difference in performance either for lack of time or for
lack of information. In fact, the data were provided to



us and we were not the first person to acquire them
with the possibility to assess, for example, the status of
the patient. Further work on this procedure could lead
to improving what we propose as discussed in the next
section with huge benefits for the patients and his family.

V. FUTURE WORKS

The continuation of our work consists in modifying
the implemented algorithms to make them usable in
online applications: indeed, we have worked remotely
only on signals acquired by others.

In this work, we have extracted different characteris-
tics and selected some of them to build the classifiers
without any consideration of their physical and physi-
ological meaning. To obtain more stable results in the
various days of classification, it is important to analyze
the meaning of the most significant features and find a
correlation between these and the patient’s psychophys-
ical state. The latter could be analyzed through an anal-
ysis of EEG signals or other physiological parameters
that can highlight for example if the patient is in a state
of sleep or if his attention is disturbed by pain.

It could be interesting analyzing the features selected
to built each classifier and studying their distribution
among different channels and different sub-bands. This
could give important information about the evolution of
the brain functionality through the time and the disease
progress. In addition, a set of common features used in
the different high-performance classifiers would be iden-
tified and used to build a single general classifier. This,
although with suboptimal classification performances,
would avoid the phase of training with known-answer
questions in each session.

It would also be interesting to extend the study of
this procedure to other patients in similar conditions and
to healthy subjects. In this way, the differences in brain
function induced by the disease could be highlighted and
useful generalizations could be reached in the construc-
tion of future classifiers.
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APPENDIX A
FEATURES SELECTED

Feature index Feature Name Band Frequency Channel
10 Range Lower Margin 7:13Hz FC5
13 Range Upper Margin 4:7Hz FC5
17 Range Width 4:7Hz FC5
21 Range SD 4:7Hz FC5
38 Amplitude SD 7:13Hz FC5
44 Kurtosis 0,5:4Hz FC5
45 Kurtosis 4:7Hz FC5
57 Power 4:7Hz FC5
65 Flatness 4:7Hz FC5
66 Flatness 7:13Hz FC5
69 Entropy 4:7Hz FC5
70 Entropy 7:13Hz FC5
73 Edge Frequency 0,5:30 Hz FC5
81 Range Median 13:30Hz FC6
92 Range Width 7:13Hz FC6

105 Range Assimetry 13:30Hz FC6
109 Amplitude Power 13:30Hz FC6
114 Skew 0,5:4Hz FC6
117 Skew 13:30Hz FC6
118 Kurtosis 0,5:4Hz FC6
119 Kurtosis 4:7Hz FC6
121 Kurtosis 13:30Hz FC6
127 Envelope SD 4:7Hz FC6
135 Relative power 4:7Hz FC6
138 Flatness 0,5:4Hz FC6
142 Entropy 0,5:4Hz FC6
157 Range Lower Margin 4:7Hz C5
160 Range Upper Margin 0,5:4Hz C5
164 Range Width 0,5:4Hz C5
168 Range SD 0,5:4Hz C5
172 Range CV 0,5:4Hz C5
191 Skew 13:30Hz C5
192 Kurtosis 0,5:4Hz C5
200 Envelope SD 0,5:4Hz C5
212 Flatness 0,5:4Hz C5
213 Flatness 4:7Hz C5
216 Entropy 0,5:4Hz C5
217 Entropy 4:7Hz C5
227 Range Median 4:7Hz C6
235 Range Upper Margin 4:7Hz C6
239 Range Width 4:7Hz C6
243 Range SD 4:7Hz C6
247 Range CV 4:7Hz C6
255 Amplitude Power 4:7Hz C6
259 Amplitude SD 4:7Hz C6

261a Amplitude SD 13:30Hz C6
262 Skew 0,5:4Hz C6
271 Envelope Mean 4:7Hz C6
275 Envelope SD 4:7Hz C6
283 Relative power 4:7Hz C6
286 Flatness 0,5:4Hz C6
287 Flatness 4:7Hz C6
290 Entropy 0,5:4Hz C6
291 Entropy 4:7Hz C6
303 Range Median 13:30Hz Cz
311 Range Upper Margin 13:30Hz Cz
315 Range Width 13:30Hz Cz
319 Range SD 13:30Hz Cz
339 Skew 13:30Hz Cz
353 Power 4:7Hz Cz
357 Relative power 4:7Hz Cz



APPENDIX B
FEATURES LIST

Amplitude Features

Feature Name Description FB
Amplitude Total Power time-domain signal: total power yes
Amplitude SD time-domain signal: standard deviation yes
Skew time-domain signal: skewness yes
Kurtosis time-domain signal: kurtosis yes
Envelope Mean envelope: mean value yes
Envelope SD envelope: standard deviation (SD) yes

Range Features

Feature Name Description FB
Mean range EEG: mean yes
Median range EEG: median yes
Lower Margin range EEG: lower margin (5th percentile) yes
Upper Margin range EEG: upper margin (95th percentile) yes
Width range EEG: upper margin - lower margin yes
SD range EEG: standard deviation yes
CV range EEG: coefficient of variation yes
Asymmetry range EEG: measure of skew about median yes

Spectral Features

Feature Name Description FB
Spectral Power spectral power: absolute yes
Spectral Relative Power spectral power: relative (normalised to total spectral power) yes
Flatness spectral entropy: Wiener (measure of spectral flatness) yes
Entropy spectral entropy: Shannon yes
Difference difference between consecutive short-time spectral estimates no
Edge Frequency cut-off frequency (fc): 95% of spectral power contained between 0.5 and fc Hz no
FD fractal dimension yes

Connectivity Features

Feature Name Description FB
BSI brain symmetry index (see Van Putten 2007) yes
Correlation correlation (Spearman) between envelopes of hemisphere-paired channels yes
Coherence Mean coherence: mean value yes
Coherence Max coherence: maximum value yes

FB: features generated for each frequency band (FB)
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