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Abstract

The continue increment of life expectancy is given rise to an increasing aging pop-
ulation in almost all the countries. In order to guarantee senior people to live
independently in their own community, there is a need of Smart Assisted Living
Systems able to monitor the Activities of Daily Living of elders, supporting them in
every day life. Although such systems can be deployed to provide a wide range of
services, one of the most interesting aspect concerns "behavioural monitoring and
understanding" with the possibility of detecting upcoming critical situations such
as a fall, loss of consciousness or other health problems.

In this thesis we present an analysis of sensor data collected in a real Smart Home
scenario from 17 households of elderly people who live alone, monitored through
environmental sensors. Such sensing devices are motion sensors (PIR) and pressure
sensors, able to detect "Occupancy Activities" of the patient as the permanence in a
given room or the usage of a specific object for a specific interval of time. In specific,
we elaborate a software to detect anomalies on single activities (events) in respect to
a specific interface of alarms: "Anomalous Duration" (an activity which lasts for too
long or too short) or "Anomalous Occurrence" (an activity repeated too many times)
and Unusual Activity. The anomaly detection system here presented is adaptive
to the patient and exploits a data-driven approach that works in a completely
unsupervised setting since the data-set is completely unlabelled. To cope with
this problem, we elaborate a first filtering phase based on GAS Growing Neural
Network Clustering technique which selects the events respectful of an "operative
definition of recurrence". Only the recurrent events are used to build a probabilistic
model utilized to compute an Anomaly Score function and perform classification.
Moreover, a set of tests have been defined to assess the performances of the system
in terms of:

• Reliability: 1) ability of our system to detect as anomalies the anomalous
events artificially generated and injected in the data-set (True positive rate)
2) ability of detecting as normal not anomalous events previously selected
(True Negative Rate).

• Adaptability: capacity of the system to adapt with respect to changes in
patient’s habit.

As general trend, the results achieved show good performances in respect to both
the two metrics despite future works have to be addressed to properly tune some
project parameters.
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Sommario

Il continuo aumento della popolazione anziana nella società odierna sta compor-
tando una sempre più grande richiesta di Servizi di Assistenza Remota (Smart
Assisted Living Services) integrati in ambiente Smart Home per il monitoraggio
delle attività giornaliere (ADL) dell’assistito. Tali sistemi danno la possibilità di
individuare anomalie nel comportamento delle persone monitorate permettendo il
rilevamento precoce di situazioni pericolose come perdite di conoscenza, malori o
presenza di intrusi.

In questa tesi un software per la detection di anomalie è stato sviluppato come
supporto ad una piattaforma digitale di Telemedicina chiamata Ticuro Reply.
L’algoritmo è stato sviluppato sulla base di un dataset raccolto in uno scenario reale
Smart Home, in cui, 17 anziani che vivono da soli sono stati monitorati attraverso
sensori ambientali. Tali dispostivi sono nello specifico sensori di movimento a in-
frarossi (PIR) e sensori di pressione in grado di rilevare attività come la presenza di
una persona in una data stanza o l’utilizzo di un oggetto per un certo intervallo di
tempo. In particolare, il software rileva anomalie su singole attività (eventi) rispetto
a una specifica interfaccia di allarmi: "Durata anomala" (un’attività che dura troppo
a lungo o troppo poco) o "Occorrenza anomala" (un’attività ripetuta troppe volte
in un certo intervallo di tempo), "Attività insolita". Il sistema è stato progettato
per essere adattivo rispetto al paziente e utilizza un approccio data-driven. Inoltre,
l’algoritmo è stato concepito per funzionare in un ambiente completamente non-
supervisionato, date le specifiche del dataset di partenza. Per far fronte a questo
problema iniziale, è stata predisposta una prima fase di filtering basata su una
tecnica di clustering chiamata GAS Growing Neural Network in grado di filtrare
solamente gli eventi che sottendono ad una precisa definizione di ricorrenza. Solo
questi eventi ricorrenti vengono utilizzati nella una fase successiva (fase di classifi-
cazione) per costruire un modello probabilistico grazie al quale è possibile calcolare
una funzione di "Anomaly Score"; sulla base di tale funzione un dato evento viene
classificato come anomalo/ non-anomalo.
Oltre alla definizione di una procedura per Anomaly Detection, in questa tesi anche
una serie di test sono stati definiti per valutare le prestazioni del sistema in termini
di:

• Affidabilità: 1) capacità del nostro sistema di rilevare come anomalie, degli
eventi anomali generati artificialmente e inseriti nel dataset (True positive
rate); 2) rilevare come non anomali, eventi normali precedentemente selezionati
(True Negative Rate).

• Adattabilità: capacità del sistema di adattarsi ai cambiamenti nella ruotine
del paziente.

Come considerazione generale, i risultati raggiunti mostrano buone prestazioni rispetto
ad entrambe le due metriche, nonostante altri lavori futuri debbano essere effettuati
per una selezione più accurata dei diversi parameteri di progetto.
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1
Introduction

1.1 Background and Motivations

Smart Assisted Living or Ambient Assisted Living (AAL) can be summarized as
an ensemble of concepts, products and services which combine new technologies to
allow people to stay active longer, remain socially connected and live independently
in their community. Having such target, AAL systems have been widely exploited
in Elderly Care context as an assistance tool for elderly people. Research in the
AAL community covers a wide range of topics but at the present time the most
important ones are focused on health parameters monitoring for health status con-
trol, human activity recognition for recognizing activities of daily living (ADLs) and
behavioural understanding for apprehending the behavioural habits of a specific per-
son. Although such lines of research are different, they all boil down to the design of
methods for early detection of critical and anomaly situations within a specific envi-
ronment. In this sense research on Anomaly Detection can be considered a crucial
point at realizing the goals previously cited. In recent years, work in Smart Assisted
Living field has intensified, taking advantage of a flourishing technological progress
in several different branches of ICT. At first, the developments in sensor technology,
reduced sizes and costs, have contributed to the diffusion of a wide range of sensing
devices which have enabled more sophisticated and accurate measurements. These
are for example wearable sensors for movement analysis as IMUs (Inertial Mea-
surements Units) or pulse-oximeter for oxygen saturation (SpO2) or environmental
sensors for motion detection. A second fundamental reason concerns the progress in
Communication Networks. The definition of new protocols and architectures over
the so-called "Internet of Things" (IoT) paradigm allows a continuous and reliable
exchange of information between such devices. Third but not least, the spreading
of Artificial Intelligence and Machine Learning has provided useful frameworks to
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process the big amount of signals gathered, making possible a data-driven analysis
with a strong impact on personalized medicine and diagnosis as well as on anomaly
detection in health and behavioural status.

Beyond a positive technological background, research in AAL has gained momen-
tum due to the fact it provides innovative approaches to face the increasing of the
socials issues brought by the aging of population. According to World Health Orga-
nization, by 2050, the worlds population aged 60 years and older is expected to total
2 billion. This trend can lead to several sociological and economical challenges as
an increasing costs for health-care systems. In this sense AAL technologies serve as
valid framework of solutions to help senior people in continuing to lead independent
lives and play an active role in the society, whether that be in the house, work or
in their community.

In this context, home monitoring of old people can be seen as a first fundamen-
tal step to achieve the aforementioned goals. This is intrinsically connected with
the concept of "Smart Home", used to define an integrated system of communi-
cating sensors and actuators which enables remote monitoring and management
of the appliances. In a Smart Home the administration and services in the house
are centralized, supporting in such way the daily activities of elderly people with
the possibility of provisioning remote assistance including care succor within the
home environment. In some papers the term SHAAL [3], Smart Home Ambient As-
sisted Living, is used to define specifically AAL technologies applied to smart home
framework which can be considered the main area of interest in this community.

As proof of a more and more growing interest about this thematic, it is possible
to see that in the literature many studies have been conducted so far and some
commercial solutions are starting to be available on the market. Some early im-
plementations of smart home are for example research projects as Georgia Tech
Aware Home [4], and MIT intelligent room [1]. Beyond purely academic studies,
some AAL in Smart Home Service have been implemented and offered by compa-
nies operating in the Telemedicine and HealthCare field as Bell Canada [5], AT&T
[6] and British Telecom (BT) [7]. In many of these systems, cameras and motion
sensors are utilized to track the activities of the elders residing at home and, in
the case of an unexpected event, notifications are sent to the family members and
the caregivers via e-mails, text messages and voice messages. In others, wearable
GPS-enabled device that can be easily attached to a keychain, are used to trace the
activity of the person in and out of the home.
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1.2 Objectives of the thesis and contributions

The work presented in this thesis deals with behavioral monitoring and understand-
ing on a real commercial AAL system developed by Healthy Reply, a company
of Reply Group based on Milan. The core of this project is "Ticuro Reply" a
telemedicine platform created by Healthy which integrates a wide number of sen-
sors to allow medical and behavioral monitoring in IoT and IoMT environment.
Ticuro can be used both in clinical and non-clinical context including a quite large
variety of services ranging from Vital Signs Monitoring, Remote Consultation with
clinicians and creation of personalized plans [8]. An important project of Healthy
Reply is precisely called "Elderly Care" which involves Ticuro platform for develop-
ing an Assisted Living system to monitor a group of old people who live alone. In
this case, environmental sensors as Motion Sensors (PIR) based on infrared light and
pressure sensors have been installed on the houses of these people. These sensors
detect the presence of a person in a specific room and at a specific time noticing
the open/lock of windows and doors as well (occupancy activities). The devices
are connected through an IoT hub to a server processing unit which elaborates
the events and sends electronic notifications to a secondary service provider once
an anomaly is detected. The processing unit, also referred to Reasoner, can detect
anomalies in the behaviour of the person following a pre-defined interface of Alarms
as for example Excessive presence of the patient inside a room or the Repetition of
an activity for too many times in a specific period referred to unusual behaviours
that might be triggered by a dangerous event such as a fall, loss of consciousness,
health problems or intruder. So far, such anomalies have been identified using a
"deterministic" reasoner based on static thresholds chosen a priory by an operator.
In this context, once a certain threshold is exceeded, for example the patient stays
in bathroom for more than 4 hours, an alarm is raised. This can be considered a
very naive and inefficient approach, unable to adapt to the habits of the patient
and therefore less robust to false alarms (false positive).

In this work a new software module integrated with Ticuro’s reasoner has been re-
alized to cope with this inconvenient. Specifically, this software performs anomalies
detection on single events-activities using a data-driven approach based on advanced
tools and frameworks available in the literature.

The anomaly detection problem here presented is not new in the literature al-
though in some works, up to now, the solutions proposed are thought to work in
very specific "ad-hoc scenarios", difficult to be reproduced on a real setting. Such
discrepancy can be caused by a lack of standardization about the sensor type to
use and the way the data have to be collected [3], a limited availability of open-
source and reliable data-sets [9] and an intrinsic difficulty in properly defining the
anomalies in the scenario [9]. In any case, as better described in section 2.4, two
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main paths can be identified [9]: a first path concerns the detection of event-related
anomalies such as anomalies on the single activity [10], [11] while a second path
is about spotting anomalies in pattern (or sequence) of activities [9],[12], [13], [14].
With respect to both approaches, the architecture and the frameworks utilized de-
pends mainly on type of dataset available at beginning. In [13], Support Vector
Data Description (SVDD) method has been used to classify pattern of activities
using a labelled dataset where abnormal and normal pattern were previously iden-
tified by an expert. Despite the very good performance, such methods are far from
being applicable in a real scenario where the datasets are usually unlabeled. [9] tries
to overcome this limits proposing a method based on HTM, Hierarchical Temporal
Memory to find anomalies also in unsupervised setting. An event-related approach
is instead investigated in [10] where an algorithm based on SOM self-organizing
map clustering technique has been used to perform anomaly detection in respect
to Unusual Activity, Unusually short activity, Unusually long activity. [10] works
with a relatively small dataset, ad-hoc created in ([15]), under the assumption that
the training data are "Anomaly Free" (semi-supervised setting).

The dataset considered in this study has been collected through Ticuro in a real
context considering around two years of recording on 17 different households of
patients. Since no manual annotation is present in the dataset, the only labels
directly available are represented by the alarms launched by the previous version
of the reasoner. From the considerations made before, such labels are not trustwor-
thy and for this reason the considered problem is completely unsupervised. In this
work we have followed an event-based approach as in [10]. The novelty proposed in
this work consist in defining a way to move the problem from a completely unsu-
pervised to semi-supervised setting exploiting a filtering strategy where an object
event, properly represented as a feature vector, is given in input to an event-filter
based on Gas Growing Neural Networks which selects only the events respectful of
an operative definition of recurrence. At this point only such recurrent events are
processed to build a probabilistic model used to perform anomaly detection based
on the computation of an Anomaly Score function (Statistical Anomaly Detection
procedure). Being the algorithm here discussed thought to be used in a real Smart
Assisted living service, a particular attention has been taken in respect to the ap-
plicability of the procedure in a real scenario. The main contributions of this work
can be thus summarized as follows:

• The development of a new standalone software for behavioural monitoring
in Smart Assisted Living context using a real digital platform named Ticuro
Reply.

• The definition of a new protocol/methodology for Anomaly Detection to find
out anomalous events in an non-supervised setting.
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• The definition of a new protocol/methodology for events filtering.

• The definition of a set of tests to assess the performances of the system pro-
posed.

This thesis is organized as follows: in chapter 2 the main concepts of Smart Assisted
Living and Anomaly Detection are discussed with a final focus on the past works
that had tried to combine such disciplines; in chapter 3 the case study considered in
this work is completely presented providing details about the dataset and the type
of anomalies we are trying to detect; in chapter 4 the anomaly detection software
is presented including the description of each single component as well as with the
analysis of the tests; finally in 5 and 6 the results and conclusion are disclosed.
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2
Literature Overview

Internet of things, or IoT, is a system of interrelated computing devices, mechanical
and digital machines with the ability to transfer data over a network without requir-
ing human-to-human or human-to-computer interaction. In an healthcare context
the usual "Internet of Things" paradigm is more often referred with the term "In-
ternet of Medical Things" to differentiate it from the other applications and scopes.
Smart home with integrated e-health and assisted living technology, is an example of
an IoT and IoMT platform where a variety of sensing and acting devices are used for
healthcare purposes. In a smart home, sensors and actuators are connected through
a Personal Area Network (PAN) or Wireless Body Area Network (WBAN) where
physiological signals are continuously measured in real-time manner, sampled and
sent to a central BSN node which performs limited data processing and functions
as the gateway to external network. In the following two sections a review of the
main topics related to the project are presented. Although the work of this thesis
can be confided to the scope of "Data Science", in section 2.1, also a brief survey
on sensors and AAL technologies is given for completeness. In 2.2, we provide an
overview about the experimental projects related to Smart Home for AAL, while
in 2.3 the theme of "Anomaly Detection" is discussed underling the most diffused
approaches and the main problematics connected. Finally, in 2.4, it is presented a
list of works existing in literature which coped with a similar problem.

2.1 Sensors technology for Smart Assisted living

Sensor type and effectiveness largely depend on the parameter to be recognized. As
stated in [16], in the scope of AAL two main categories of sensors can be distin-
guished: wearable sensors and non-wearable sensors. Wearable sensors are usually
attached to a person directly (e.g., bracelet sensors or cardio sensors) or to her/his
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Figure 2.1:Healthparametermonitoringscheme

clothes (e.g., an accelerometer, step counter) and are used to measure vital param-
eters as well as to assess motion activity characteristics (Low-level sensory data
analysis 2.4); non-wearable sensors are deployed in stationary locations of a house
or a room and can be exploited often to detect a person and his/her activities.

Wearable sensors are usually deployed for two main tasks: vital signs monitoring
and Movement Activity Analysis. In the first task, it is possible to include a large
variety of sensors that measure some specific body parameters as blood glucose,
blood pressure, heart rate and activity (ECG) [17], blood saturation, CO2 gas,
or brain activity. Despite in the past such measurements were only possible in a
clinical environment, nowadays many cost-effective sensing devices are available on
the market [18], figure 2.1.

In Movement Activity Analysis, it is possible to include a set of wearable sen-
sors which provide quantitative assessment of the movement and can be deployed
for activity recognition or posture analysis. These sensing devices are particularly
exploited in AAL technologies for ADL (Activity of Daily Living) classification [19]
and to differentiate different types of motion [20] (e.g., running, walking, sitting,
scrubbing, etc.) as well as useful tool for fall detection [21]. In this domain Iner-
tial Movement Sensors (IMU) are the most diffused ones. These units are usually
composed by an accelerometer integrated with one or a set of gyroscopes and/or a
magnetometer. Inertial units are usually embedded in many devices of daily using
such as wristwatch or smartphones. Specifically for ADL classification, another tech-
nology named RFID, "Radio-Frequency Identification Devices", is sometime utilised.
Such tools use radio waves to identify objects or persons tags and are often used to
detect the interaction of a person with an object. In [22], RFID tags were deployed
on various kitchen utensils such as bowls, cutlery, dishes, and jars to detect food
preparation, eating, and drinking.

Despite this kind of sensors had a great diffusion over the last years, such technol-
ogy can be considered largely impacting on the final user. Moreover, the quality of
the data gathered by wearable sensors principally depends on the way these units
are applied on the body. Just a small error in the application of the sensing devices
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can have a huge influence on the signal, compromising the reliability of the mea-
surements. In a non clinical context and without the supervision of an expert, this
requirement is not always respected with a considerable impact on the diffusion of
wearable sensors for AAL.

From this perspective, nonwearable sensors can be a valid solutions because they
are less intrusive and do not require any interaction from the users side [16]. On the
other hand this kind of sensors are able to gather less informative data with a lower
accuracy. They can be deployed for measuring the operational status of objects,
measure water flow, room temperature, presence of a person or door/cupboard
openings/closings [16] (High-level sensory data analysis 2.4). Often times, such
kind of sensors are commonly referred with the term environmental sensors. In
Smart Home Assisted Living domain, the most used type of non-wearable sensors
are the following. Infrared sensors (IR) which uses infrared light to discover human
presence in a room, detect motion in a specific area, or to locate a human within
a house [23]; ultrasonic sensors which exploit ultrasonic vibrations for movement
detection and localization by measuring distances to objects; photoelectric sensors,
which detect a light source and output a signal when the light intensity is greater
or less than the predefined threshold value [24]. Other solutions can come from
vibration sensors [25] usually deployed to detect a person falling or interaction with
various objects, or measuring water flows. Pressure sensors can be considered a
variant of the last ones, and are utilized to detect the presence of a person, steps,
and fall, aperture/disclosure of doors and windows [26].

In a broad sense, it is possible to include in "non-wearable sensors" category
also Video Cameras and Audio sensors. In video-based approaches, a camera is
installed in a specific place of a house to detect person movements and to classify
ADL through Computer Vision tools [27]. Differently, in [28], Audio Sensors such
microphones and audio transducers are used to perform the same task discriminat-
ing different types of sounds and connecting them to the related ADL. Although
this two last solutions considered to be the most reliable from a technological point
of view, they are rarely implemented in a real context because considered too much
obtrusive on patient’s privacy.

The sensors integrated in the Ticuro Platform for this project are: PIR sensors
and pressure sensors. The former, are used to detect movement and presence of a
person in a specific location and consequently checking the presence of a person in
a specific room at a specific time; the latter are used to capture the opening and
lock of the fridge, section 3.

All sensors and actuators in the smart home are connected with the central com-
munication and decision making platform though a communication network. All
physiological and environmental signals measured by the sensors are transmitted to
the central computing node over a wireless and/or wired communication medium.
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Figure 2.2:PIRsensorsfunctioning Figure 2.3:RealPIRSensors

Although wired connection is a feasible solution for fixed-position based environ-
mental sensors, it is not suitable for wearable and long-term monitoring systems.
The wearable medical sensors can be connected in a Body Sensor Network, where
the central BSN node (the hub) is connected with all environmental sensors and
actuators through the WSN to form a Local Area Network (LAN) or Personal Area
Network (PAN) and to provide data communication inside the smart home. As
underlined in [29] communication technologies used in these systems may vary from
supplier to supplier in a quite fragmented IoT market. The widely used protocol are
Low-Power Wireless Personal Area Networks (6LoWPAN) over Bluetooth, ZigBee
IP, and 6LoWPAN over DECT, ULE, and Thread.

2.2 Smart Home Projects and Datasets

Smart Assisted Living services for monitoring elderly daily behaviour require the
existence of good datasets that enable testing and validation of the methods pro-
posed. However, the cost to build real smart homes and the collection of datasets
for such scenarios is very high and sometimes impracticable for many projects; be-
yond a pure economical reason, other problems have to be taken into account as
finding the optimal placement of the sensors [30], finding appropriate participants
ensuring them a certain level of privacy [31]. For these reasons, there are few num-
bers of smart home projects being established worldwide. One of the first pioneer
project in this field was MavHome, started in 2003 [15], which proposed a first Smart
Home architecture and standard for behavioural monitoring through cameras and
environmental sensors. Since 2003 to the the present, other projects have begun:

• Smart AHRI (Aware Home Research Initiative) [4] at Georgia Institute of
Technology.

• CASAS (The Center for Advanced Studies in Adaptive Systems) at Wash-
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ington State University [32], [33] where Cook et. al created a toolkit called
smart home in a box where they integrate several types of environmental sen-
sors that can fit in a single box. The toolkit has been installed in 32 homes
to capture the participants interactions.

• TigerPlace project [34] at University of Missouri, USA, where passive sensor
networks are deployed in 17 flats within an elder care establishment. The
devices include motion sensors, proximity sensors, pressure sensors and others.
The data collection took more than two years.

• PlaceLab at MIT [1], [35] is a 1000 sq.ft. smart flat developed in several
rooms. The flats have many sensors distributed throughout each room, such
as electrical current sensors, humidity sensors, light sensors, water flow sensors,
etc. Volunteering participants can live in PlaceLab to generate a dataset of
their interactions and behaviours. The project produced several datasets for
different scenarios.

• HomeLab [36] is a smart home equipped with 34 cameras distributed over
several rooms. HomeLab is promoted and has an observation room that allows
the researcher to observe and monitor the conducted experiments. HomeLab
aims to provide datasets to study human behaviour in smart environments
and to investigate technology acceptance and usability.

• Smart home Lab at Iowa State University [37]

These smart home projects monitor occupancy daily living activities, enhancing
comfort and deploying heterogeneous sensors for to better regulate daily activities.
Obtrusive camera sensors are sometimes included as well. Only small part of the
data generated in the experimental settings just cited are free available for research
purposes; a quite good percentage of the datasets are proprietary based and so
not available to the whole scientific community. To cope with this problematic,
Smart home simulation tools have been proposed as an alternative solution. A
wide explanation of such types of tools can be found in [38], where the authors
distinguish two approaches: model based and interactive. In the first approach pre-
defined models of activities are used to generate synthetic data [39], [40] while, in
the interactive approach, the data are generated by an avatar that can be controlled
by a researcher or by another human participant. The avatar moves and interacts
with the virtual environment which is endowed of virtual sensors and/or actuators
[41]. Although the last method can be considered more realistic it requires an effort
from the user side reducing the amount of data that can be generated.

As underlined in [42], despite a certain amount of investigations and data collec-
tion have been conducted so far, most of the datates do not contain labeled data
and usually anomalies are generated forcing a certain anomalous behavior in the
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Figure 2.4:PlacelabSmartHomeEnvironmentatMIT[1]
Figure 2.5:SmartHomeScenarioforSmartassisted
living

monitored person [9] or injecting artificially the events, [10] [32]. In both cases
a certain degree of arbitrariness is present on what the authors of the study has
defined as anomaly.

2.3 Anomaly detection techniques

"Anomaly detection" is a very challenging problem widely explored in the scientific
literature as well as in the philosophical one. The anomaly detection problem can
be shortly summarized as identifying single data point or patterns of them that do
not lie in a normal region. Therefore, the problem can be approached by recognising
this normal region and flagging as anomaly anything outside it.

As underlined in one of the most important survey about this subject [2], the
Anomaly Detection problem is very challenging in practice due to the absence of a
criteria to distinguish what can be considered normal and what abnormal. Moreover,
the concept of normality can change from one domain to another and evolve in
time also within the same domain. From a more practical point of view, a lack of
representative data-sets with or without labels is usually another major problem
and often it is very difficult to distinguish true anomalies from noisy data. To
properly address this problem in [2] anomalies are categorised into three types:

• Punctual anomalies: Where anomalous data points are regarded so different
from the rest of the data. In Figure 2.6, regions N1 and N2 are considered
normal because most of the data points are in these two regions. On the
other hand, O1, O2 and O3 are far from the normal regions and considered
anomalies.

• Contextual anomalies: Where the context of the data points is anomalous
and not the data points itself. As shown in 2.8, the data point t1 is identical
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Figure 2.6:Pointanomaliesinatwo
dimensionalspace[2]

Figure 2.7:Collectionanomalyina
humanelectrocardiogram[2]

Figure 2.8:Contextualanomaliesin
amonthlytemperaturedata[2]

to the data point t2 but the latter point is considered anomalous because it
appears in an anomalous context.

• Collective anomalies: Where a collection of data points is considered anoma-
lous not because of the data point themselves but because of the collection of
these data points together. In Figure 2.7, The data points in the electrocar-
diogram are considered anomalies because of their appearance as a collection
in this data and not because of the data points themselves.

With this premises it is possible to define an Anomaly Detection Technique as a
method which allows one to detect anomalies in a given data set. With regards to
the availability of the data labels, Anomaly Detection Techniques can be divided
into three categories:

• Supervised: The entire dataset (or a part of the it) is identified with labels
which define if data points are normal or abnormal.

• Semi-supervised: The assumption here is that the available training data is
all normal and the deviation from these normal data points is considered an
anomaly.

• Unsupervised: The data are not labelled and no training data is needed. The
techniques belonging to this category assume that the majority of the data
points are normal and thus any isolated points are considered anomalies.

Beyond this first distinction Anomaly detection techniques can be differentiated
in respect to the so-called categorisation factor used. A summary of the main
approaches is reported in the following.

Classification These methods need labelled data points for the models to learn
from. The main idea is to train a classifier on the normal data points and then
evaluate the accuracy of the model on unseen testing data. These techniques can
be further divided into two categories: one-class and multi-class anomaly detection
techniques. The one-class models group all normal data points as one big class and
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Figure 2.9:Anomalydetectionapproachesinrespecttotheavailabilityoftrainingand
testingdata

learns the characteristics of these data points trying classify them as normal. The
points residing outside this class are flagged as anomalies. To learn the normal
region, several algorithms can be used although the most popular one is Support
Vector Machine (SVM) [43]. The multi-class category is similar to one-class except
that instead of learning one normal region, multiple regions can be learned, into
several categories. The tools exploited in this case are Multi-Class Support Vector
Machines [44], Artificial Neural Networks, Bayesian networks [45].

Nearest Neighbours This type of anomaly detection techniques are widely ex-
ploited in unsupervised setting and are based upon a proper definition of a distance
metric among data points. According to this definition of distance, the data are
organised in neighbourhoods to understand the structure of the dataset. The algo-
rithms in this category can be further divided into two sub-categories: algorithms
based on the Kth nearest neighbour and density-based algorithms.

A Kth nearest neighbour algorithm has been applied for example in [46] by Gut-
tormsson to detect anomalies in the operation of turbine motors. In this case the
Kth nearest neighbour distance has been used as an anomaly score for a collection
of data points and a threshold can be set by a field expert to separate anomalous
data points from normal ones.

Differently, density-based techniques measure the density of data points neigh-
bourhoods. Any data point that resides in a low density neighbourhood is flagged
as an anomalous data point. On this idea it is based the popular Local Outlier Fac-
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tor (LOF) density based algorithm that takes into account the ratio of the average
density in each neighbourhood or cluster. To calculate the density of a neighbour-
hood, a radius of a small hypersphere is defined for a neighbourhood with a data
point at its centre. Then, the hypersphere volume is divided by the number of data
points in the neighbourhood and the resulting number is the density score for this
neighbourhood. The anomalous data points can be easily defined as the data points
that reside outside of the neighbourhood [47]. From 2000 when LOF algorithm has
been proposed, many extensions in the literature were introduced with the aim of
improving the calculation time and reducing the computational complexity [48].

Nearest Neighbours techniques do not require the availability of target labels for
every data point and work with any type of data assuming that an appropriate
distance measure is defined. For these reasons such algorithms are suitable and can
be used in an unsupervised and a semi-supervised fashion. The main disadvantages
of these techniques lie in the fact that the normal data is assumed to have a cluster
structure. Moreover they can be computationally expensive, with a complexity
around O(N2) since the distance for each data point is calculated against all data
points.

Clustering approach Clustering based anomaly techniques can be considered
very similar to nearest neighbours techniques for many aspects. While nearest
neighbours techniques perform the calculation between a data point and its local
nearest neighbour, the clustering based techniques perform the calculation between
each data point and the group or the cluster that it belongs to. As in the previous
cases, also in this type of techniques some sub-groups can be defined. A first group
of the clustering techniques presume that the normal data has a cluster and any
data point outside of this cluster is flagged as an anomalous data point. Examples
of these techniques are DBSCAN which was proposed in [49], ROCK [50] and SNN
[51].

Another group of these techniques works under the assumption that normal data
points are organised around the cluster centre or centroid. The data points that are
not close to the centre are identified as anomaly data points. The general procedure
of these techniques starts by using a clustering algorithm to group the data points.
Then for every data point, the distance from the data point to the cluster centroid is
defined as the anomaly score. Several algorithms were successfully used to achieve
this goal such as Self-Organising Maps [52], Expectation Maximisation (EM), K-
means [53], Gas Growing Neural Network [54].

A third family of these clustering methods suppose that normal data points re-
side in dense clusters and anomalous data points are concentrated into low density
clusters. There are many algorithms in the literature that follow this assumption.
Examples of these algorithms are Cluster-Based Local Outlier Factor (CBLOF)
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which is proposed in [55] in 2003. Similar to the other families, many extensions to
these algorithms were proposed in the literature [56].

As with the Nearest Neighbor approach, Clustering techniques can work in an
unsupervised in a semi-supervised fashion.

Statistical Statistical techniques try to fit a statistical model on the normal
data points distribution and holds on the assumption that an anomaly is an obser-
vation which is suspected of being partially or wholly irrelevant because it is not
generated by the stochastic model assumed.

The statistical approaches for anomaly detection problems can be divided into
two categories: parametric and non-parametric techniques.

Parametric techniques assume the existence of a distribution and its parameters
can be learned from the data points. The distribution parameter is referred to
as Θ which is estimated from the training data points to compute the probability
density function (pdf) f(x,Θ). At this step an anomaly score function is defined in
respect to f(x,Θ). When the model is defined, simple thresholds can be applied to
filter out the normal data from the anomalous data or differently a statistical test
can be applied [57]. Another class of parametric techniques exploits a regression
model to detect anomalies with frameworks used in time-series analysis [58]. These
techniques fit a regression model based on the training data points and then the
anomaly score is calculated as how far this testing data point is from the predicted
ones.

Differently, non-parametric techniques do not assume the existence of a distribu-
tion of the data points. Rather, distribution of the data is derived from the dataset
itself. These techniques can be further divided into histogram based and kernel
function based techniques. Kernel based methods use kernel functions (better de-
fine later) to estimate the density of the dataset. Examples of these techniques are
[59] and [60].

2.4 Related Works

Although most of the techniques and concepts related to Anomaly Detection have
been formulated in the literature for more than 25 years, the applications of such
frameworks in Smart Home Assisted Living has been explored only over the last 15
years.

As stated in one of the most recent survey about application of Anomaly De-
tection in Smart Homes [61], it is possible to distinguish among three main types
of research areas in this domain: health parameter monitoring, for control of the
health status, environmental monitoring intended as the monitoring of the ambient
parameters as temperature, power consumption etc., Behavioural Monitoring and
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Understanding intended as the analysis of behavioral patterns and daily activities,
the one treated in this work. Always in [61] two kind of level of analysis are dif-
ferentiated in respect to the type of data available: Low-level sensory data analysis
in where row signals coming from the sensors are processed and High-level sensory
data analysis where only a higher pre-processed data output is accessible from the
analyzer side.

Low-level sensory data analysis is usually possible when signals in time series fash-
ion are available at the input. The signals are processed through a specific pipeline
such as pre-processing, segmentation and feature extraction. In Behavioural Moni-
toring domain, such types of analysis are usually performed for Activity Recognition
(AR) or Discovery (AD) processing (for example) the inertial signals (3D accelera-
tion, turn velocity..) coming from IMUs and ambient sensors [62]. Such topics have
been widely explored so far in many studies exploiting tools as Hidden Markov Mod-
els (HMM) [62], SVM-Based Multi-modal Classification [63] and Artificial Neural
Networks [64]. Even many projects and data-set developed over the Smart Home
Environments cited in the previous section 2.2 are focused on this direction.

The eventual output of low-level data analysis is occupancy activities or labels,
such as sleeping, eating, showering, entering or leaving home. These different activ-
ity labels could be further analyse from higher-level context, to get more information
about occupancys model of lifestyle (living habit) with the goal of spotting anoma-
lous activities such falling, suffering a stroke or loss of consciousness. This is the case
treated here, where only the binary output streams of the environmental sensors
are available in the dataset (better explicated in section 3).

As partially anticipated in the introduction, focusing on this specific research area,
two main approaches can be identified in the literature. A first path concerns the
adoption of an event-related approach which aims at spotting anomalies on a single
activity (or event) and can be re-conducted to a "Punctual Anomaly" problem. A
second alternative concerns a pattern-related approach where a pattern of activities
is considered with the interest of finding anomalous behavioural patterns and can
be re-conducted to a "Collective Anomaly" problem.

One of the first work is an article written by Jain et. al in 2006 [14] referred
to MavHome architecture [15] cited in the previous section. In this paper different
algorithms have been used to perform activity prediction on sequences of events
measuring at the same time the divergence between the detected activity and the
one predicted by the algorithm (Markovian approach). To validate the different
methods, a mixture of artificial events have been generated (1400 events per day of
the week).

An "event-related" anomaly detection system is proposed in the work of Novak
et al. in [10]. The authors have used the MavHome project dataset and have built
a clustering anomaly detection algorithm using Self Organising Maps (SOM) to
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detect several types of anomalies such as unusual long or short periods of inactivity,
unusual presence or absence and changes in the daily rhythms. This work follows
a semi-supervised approach and can be considered one of the most complete works
for the detection of such types of anomalies. For this reason the mathematical
description and tools used in [10] have been taken as reference for the anomaly
detection system presented in this thesis.

Other works as [13], [65] have examined the problem of detecting anomalous pat-
terns of events. Specifically, Shin et al. (2011) [13] proposed a method for the
anomaly detection of daily living patterns exploiting a 1-class Support Vector Data
Description (SVDD) method to classify a given pattern as normal or abnormal. The
dataset for this project is collected using infrared (IR) motion sensors installed in
elderly inhabitants homes. The test subjects were suffering from mild to sever other
diseases and the data collection lasted for seven months. They track the changes
in motion sensors by measuring: (1) how many times (the percentage) the motion
sensors were triggered and (2) how often (the frequency) an occupant is moving
between two sensors. However, Wong et al. [66] pointed out that this system would
often generate false alarms for anomaly detection due to the reason that occupancy
activity patterns are irregular. Such as waking up late in the morning or perform-
ing usual activities during different times in the day. Differently Kang et al. (2010)
[65] used a Hierarchical Hidden Markov Model (HHMM) to recognise and predict
the states of a smart home inhabitant and proposed an algorithm based on that
model to detect anomalies in the inhabitants behaviour. 77 sensors were installed
in two single-person apartments and gathered data for two weeks. The sensors were
installed on devices such as refrigerators, drawers, etc.
Another work is the one presented by Aran et. al (EPFL) in [67], where a proba-
bilistic model has been built taking into account the location of the subject at each
our of the day defining in this way a likelihood of the subjects behavior based on
her/his location and outings.

Aztiria et al. [68] developed a system that could identify possible shift of profile
data. A shift or known as concept drift is the change detected, when comparing new
occupancy measurements with the recorded frequent activities represented from the
profile data. The modification steps required to turn the frequent activity to newly
observed activity were used as a measure to decide whether the newly observed
activity is to be classified as anomalous.
In conclusion, one of the most recent and advanced work published about Anomaly
Detection on Behavioural Patterns is [9] published in 2018. In this paper HTM,
Hierarchical Temporal Memory (HTM) theory, is applied on real data and artificial
data-set to spot anomalous sequences of activities.

As general consideration it is possible to state that, despite the pattern approach
can be considered a more general solution in respect to first one, the event related
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approach is simpler to be tested and be deployed in a real-context as underlined by
[66].

Each of the papers cited has elaborated its own definition of anomaly in respect
to its scope. Novak et al. in [10] assumes a part of its starting data-sets is free from
anomalies using a Semi-Supervised approach and the anomalies are artificially gen-
erated but very few specifics are given in details. In [9] and [67] a validation dataset
has been created through real measurements and simulated one. In the first case,
different people have been monitored in smart home environment and the anomalies
have been manually annotated by the participants themselves. In the second case,
the data has been generated by controlling an avatar with OpenSHS simulator tool
[69]; in this scenario the user decides to create anomalous behaviours according to
her/his own interpretation. Despite using an ad-hoc smart-home dataset can be a
valid solution to train and validate a specific algorithm, in real scenario such as the
one considered in this study, usually a limited amount of information is available
and the data are in most of the cases unlabeled and affected by systemic anomalies
(better defined in section 3). Moreover, the huge size of this dataset make unfeasible
and sometimes impossible labeling in retrospect as done in [13].

In this study, where an event-related approach is contemplated, we start from a
proper definition of the type of anomalies and we propose a method to automatically
clean and filter the events, preserving in such way only those ones which comply
to an operative definition of "recurrence" (later defined). The algorithm proposed
is inspired on "Near Cluster Centroid" strategy proposed in [10], but in this case
Gas Growing Neural Networks are used instead of SOM. Besides presenting a new
algorithm to realize this filtering operation, one of the novelty brought by this
work consists in defining a set of specific metrics (with related tests) to assess the
confidence of the system proposed. Specifically, beyond testing the robustness of the
system in terms of true positive score (ability of classifying as anomalies artificial
anomalous events injected on the dataset) and true negative score (capacity of
classifying as normal events that are supposed to be normal), we propose a method
to test adaptability of the system which reflects the capacity of the system to adapt
to the changes in the patient’s behaviour.

As a general consideration, it is possible to state that the quality and the quantity
of the data available can be considered one of the main issues at the moment.
Most of the datasets are not open-source and a lack of standardization as well as
a differentiation on the way the anomalies are defined, impacts the possibility of
comparing the performance among the different approaches.
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3
Case Study Presentation

The "Elderly Care" service here considered is based on a real digital platform which
collects data from two main types of environmental sensors: PIR (Passive Infrared
sensors) and pressure sensors. PIR sensors are installed in different rooms of the
patient’s habitation and provides a binary output: state ON if a motion is detected,
state OFF if no motion is detected. Differently, pressure sensors are usually applied
on the windows or on the fridge and are sensible to mechanical strains signaling
in this way the interaction between the patient and the object itself. With these
premises, in this context the term activity (occupancy activity) is referred to two
main typologies of actions: the type 1 indicates the presence of a patient in a given
room as for example "presence in bathroom between 8.15 am to 8.25 am", the type 2
indicates the time of usage of an object by the patient as for example "fridge opened
at 12.15 am and closed at 12.16 am". All the outcomes produced by the sensors are
transmitted to an IoT gateway which sends them to a Reasoner Processing Unit
that performs a first processing and elaboration of the data. The binary signals are
combined by the Reasoner, providing at the output an interface with the occupancy
activities of the patient in time domain. A possible example is represented in Fig.
3.1. A single instance of an activity is called "event", which is therefore characterize
by the following attributes: st, the starting time, et, ending time, ID_PATIENT ,
the ID of the patient and a, the type of activity. At the current state in the
Ticuro platform seven activities have been considered, six of type 1: "presence of the
patient in room A" with A={kitchen,bathroom,living-room,hallway,bedroom,outside}
and one of type 2: "time open the fridge".

With this initial setup, the Reasoner is able to capture the main aspects of the
patient’s behavior, enabling the possibility of spotting anomalies whenever the be-
haviour deviates too much from the usual pattern. As stated in the introduction,
the Reasoner considers a specific set of different type of anomalies related to a spe-
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Figure 3.1:ExampleoftheBinaryDataStreamattheoutputoftheReasonerUnit

cific interface of alarms. Given a single event e referred to activity a, the Reasoner
can launch different kinds of "Event-Related" alarms each referred with an ID. In
this project, we have directed our efforts in studying two types of alarms which can
be explained as follows:

1. Anomalous duration of activity a

2. Anomalous repetition of activity a (Anomalous occurrence)

Such specific anomalies have been chosen because they can be considered sim-
ple and valid indicators of dangerous situations. An anomalous high duration of
an activity can be for example caused by a fall or loss consciousness. Differently,
a high occurrence of the same activity could be indicator of weirdness on the be-
haviour as for example the presence of intruder or an illness. Although this can
be seen as a simplification, this is necessary to properly address the problem. An-
other important specificity of the project lies in the fact that these alarms have
to be spotted separately since the reasoner performs different actions according to
which alarm/alarms is/are launched. As just discussed, the Reasoner exploits a
very simple approach to find these behavioural anomalies which basically consist in
checking if the considered quantity (i.e. duration, occurrence of the event) exceeds
a predetermined threshold, no matter the habits of the patient and not taking in
consideration the time of the day in which the event has occurred. The software
here presented tries to overcome this "threshold approach", exploiting a new algo-
rithm and protocol based on machine learning techniques which spot behavioural
anomaly according to a data-oriented strategy which considers the past events and
the previous story of the patient.
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PATIENT_ID ACTIVITY_ID START_TIME END_TIME ALARMS
123 8 18:39 19:12 No Alarm
221 17 18:25 19:12 Anomalous duration of activity
221 21 18:14 18:25 No Alarm
... ... ... ... ...

Table 3.1:EventStreamsattheoutputoftheReasonerUnit

The dataset used to train and validate the system has been collected from mea-
surements taken in a real scenario from 17 different houses of elder people who live
alone around the urban and suburban areas of Milan over a time period of 2 years.
The data-set consists in a time-stamp of events each of which is represented by a
tuple of features cited above (st, et,ID_PATIENT,a) plus a possible list of related
alarms launched by the reasoner (represented in Table 3.1). The total number of
events collected considering all the patients is around 2 millions, a considerable size
for such kind of dataset. As the measurements are taken in a real smart home sce-
nario, the data are sometimes corrupted by so-defined "systemics anomalies" such
as problems with the transmission of the signals, hub offline or "crazy sensors". All
these events come with anomalies from an analyzer side although they are not trig-
gered by dangerous events but are simply problems in the system itself. In Table
3.2, a summary of the dataset is provided. Specifically, the number of events for
each activity a (column) is represented for all the patients (IDs of the patients re-
ported on the row). In the last column, the total amount of time for the monitoring
period is summarized in respect to each patient.
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ID 7 8 16 17 22 21 19 Total Time

364 1337 15769 21335 20278 13928 41901 943 days, 10:05:31

323 295 23592 33554 34918 25455 3163 943 days, 13:45:45

285 162 17587 21190 21436 3579 790 days, 14:02:31

286 837 18188 11328 55427 38029 5811 868 days, 13:59:01

385 819 38048 66199 153838 167639 9527 943 days, 14:04:49

424 476 7984 9613 12881 774 days, 19:24:14

464 219 10017 9811 10251 13868 14001 750 734 days, 10:39:21

526 1219 22633 14510 41197 21530 1136 943 days, 9:38:28

563 114 18991 5789 28624 8332 510 921 days, 19:37:17

525 1057 7540 17774 43631 44211 368 809 days, 20:58:24

585 422 812 273 1267 327 days, 7:26:50

694 1437 1421 622 days, 12:19:16

695 2369 2379 622 days, 13:13:34

705 115 974 2136 1531 933 days, 15:16:39

444 180 20471 27881 26494 24666 32083 6409 810 days, 15:03:31

303 380 25240 14814 4747 23859 5108 624 days, 10:28:42

523 299 4801 23313 8147 27338 189 867 days, 9:53:23

Table 3.2:Summaryoftheinputdataforeachpatient.Inthetablethenumberofeventsforeachactivitya (column)
isrepresentedforallthepatients(rows).Inthelastcolumn,thetotalamountoftimeforthemonitoringperiodis
reportedforeachpatient
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4
Anomaly detection system

In this chapter the entire anomaly detection system is presented. As better clarified
in section 4.2 the procedure here proposed comprises three main phases: feature
extraction, event-filtering and classification. In "Feature extraction", referenced in
subsection 4.3, the event e is described by a numerical tuple x = (p, d, o) which
represents respectively the time position of its start-time, the duration and the
occurrence; such formalization has been chosen because it enables a topological
description of the anomalies examined. Then, in the "filtering phase", subsection
4.4, the events are drained according to a precise definition of recurrence based on
Gas Growing Neural Network clustering technique; at the end in classification phase,
illustrated in 3, the probability density function of the recurrent events is estimated,
with the possibility of defining an anomaly score function representing the likelihood
of the event. At this point a threshold on this function is computed through an
dynamic threshold assignation algorithm regulated by an α hyper-parameter. In
the recognition phase, if the value of the anomaly score computed on e is lower than
the threshold, the event is spotted as anomalous.

In the first part of the chapter, section 4.1, we define the most important concepts
used as baseline for the algorithms presented in section 4.2. Specifically in subsec-
tion 4.1.1, we present a possible subdivision of time line introducing the notion of
Time class. With this concept in 4.1.2, we propose different types of approaches
contemplated for Anomaly Detection on Occupancy Activities, defining in proper
manner the approach used in this thesis. In subsection 4.1.4, the rationale behind
the algorithms for Event-Related Anomaly Detection is explained in relation to
other works previously done. In subsection 4.1.5, the Gas Growing Neural Network
algorithm is discussed to define the concept of "Recurrent event" in subsection 4.1.1.

In conclusion, in section 4.6, the tests for performances assessment are introduced.
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4.1 Preliminary Remarks

4.1.1 Time Subdivision

Each event e is identified by a start-time (st) and an end-time (et) which identifies
precisely the event in time line. For this reason, a precise time subdivision is
essential to address properly the problem. In this direction we split a full 24 hour
day into a number n of "Time Classes" of same duration. By definition, an event
e belongs to a time class if its starting time is included in it. The choice of n is
arbitrary but a reasonable value can be identified with n = 12 conducting to the
following subdivision: [00 : 00 − 02 : 00], [02 : 00 − 04 : 00], ..., [22 : 00 − 24 : 00].
The number 12 has been selected mainly because it is a good trade-off between
two conditions. At first, we want that events associated to the same time class
correspond to similar behaviours (preferring an high value of n). For example, time
class [00:00-02:00] contains often events correlated to sleeping activity or, inversely,
time class [12:00-14:00] includes events referred to lunch activity. On the other hand
if n is too high, each time class hold very few events, compromising the possibility
of extrapolating valid statistics.

Time-slot can be seen as a single instance of Time Class. Specifically, while a
Time-Slot is related to a specific day, the concept of time class is not; in other
words, the Time lot [10-12] referred to the date 10/12/2001 is different to the time
slot [10-12] referred to the date 11/12/2001 although they belong to the same time
class.

The definitions of these concepts will be very useful for the characterization of
the anomalies as well as in the testing phase.

4.1.2 Type of Anomalies and Approaches

Once clarified the context in which the anomaly detection system has to work, a
precise definition of anomaly has to be given in respect to the task. It is worth to
mention that all the considerations written from now on, hold on the assumption
that anomalies represent a minority with respect to the rest of the data. If
this assumption is not verified, the work done here cannot represent a valid solution.

As indicated more times during this thesis, different types of anomalies can be
contemplated.

• A first type of anomalies is related to the specific activity, considering the
single event as the object of analysis. Such type of anomalies are examined
in "Event-Related" approach where the properties of the event are investi-
gated (when it starts, its duration etc.). We are thus interested in spotting
anomalous events.
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• A second type of anomalies is related to "Time Slot" as considered in [13]
and [67]. In this case we are interested in studying the properties of "Time
Slot" as for example the number of events occurred in it, the type of events
etc. It is clear that "Time slot -related" approach can be considered a valid
solution to define anomalies referred to multiple activities (each time slot
can be associated to more events), while keeping the problem referred to a
punctual anomaly (spotting an anomalous Time-Slot). Despite this could
lead to a more general solution, the high dimensionality of the mathematical
formalization related to this approach could affect the performances of the
anomaly detection system so designed.

• Another possible type of anomaly can be identified in anomalous pattern of
events i.e. "collective" anomalies, already discussed in 2.4. This approach
is interested in spotting anomalies related to a sequence of events consider-
ing a wide variety unusual behaviours as for example "moving between the
bathroom and the bedroom for too many times" or "going outside and inside
repetitively". As stated in section 2.4, this approach has been addressed in
many studies as [9] and [65].

As indicated in section 3, in our case the definitions of the anomalies is a project’s
specific since it derives from the definitions of the Alarm Interface considered by the
Reasoner module. As indicated in the previous section, the alarms of the Reasoner
considered in this work can be summarized with the following semantic:

1. "Anomalous duration of activity a.. "

2. "Anomalous occurrence of activity a.."

Being the alarms related to the single activity a, an "Event-Related" approach
seems to be the most valid solution. Specifically we address our efforts in detecting
anomalous events according to three types of anomalies: "Anomaly of duration",
events that have an anomalous duration as for example an excessive/too short
permanence in a room; "Anomaly of occurrence", activities repeated for too
many times during the last time interval; "Unusual Activity" activities that are
simply performed in an unusual time (for example going out at 3.00 a.m. in the
morning).

4.1.3 Other remarks

Once the task has been formulated properly, it is possible to state the following
remarks.
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• The problem here considered is unsupervised since all the events contained
in the dataset are unlabeled. The only possible labels could derive from
the alarms launched by the previous version of the reasoner. Such alarms
were anomalies spotted following deterministic rules, so cannot be taken as
reference in our analysis. Moreover, in the data-set, no manual annotation is
available about the consistency of the alarm itself. In other words, the use of
a Supervised Strategy is infeasible.

• Following an "Event Related" approach, the anomalies are referred to a specific
activity a and so it is not reductive considering the activities one independent
from the other, performing separated analysis for each of them as done in [10].

• From the peculiarities of the project enounced in previous chapter, it is clear
that, although a common analysis can be performed, at a certain point the
anomalies have to be spotted separately since the reasoner performs different
actions in respect to which alarm/alarms is/are launched.

4.1.4 Unsupervised Anomaly Detection Techniques for Event-related
approach

All the considerations made in 4.1.3 and 4.1.2 define in a proper manner the problem,
allowing an accurate selection of the analytical tools used to achieve the objective.

Choosing an "Event-related" approach, a first essential step consists in the selec-
tion of an appropriate mathematical description of the event e, associating it to a
tuple x = [x0, x1, ..., xm] ∈ Rm. The mathematical formalization has to be defined
in relation to the types of anomalies contemplated. In [10] for example, where they
are interested in detecting "Unusual long and short activity", the single event is
described as 2D features-vector e = [p, d], where p is the relative position of the
starting-time in the day and d is the duration of the event; of course, each event
is differentiated on the basis of its activity ID (a parameter) conducting separated
analysis for each activity.

With respect to the methods used to spot the anomalies, the remarks contained
in section 4.1.3 are particularly useful in this sense. Being the initial context not-
supervised, a clustering approach can be considered the most suitable solution at our
purpose as underlined in section 2.3. In the literature, various clustering techniques
have been considered: K-means, Fuzzy c-means, etc. In [10], Self Organizing Maps
(SOM) have been deployed as clustering technique owing to it does not require
a number of clusters to be defined in advance as it is with the K-means. SOM
are single layer feed-forward networks having an input layer of source nodes that
projects directly onto an output layer of neurons. The SOM input layer has m

source nodes, each associated with a single component of the input vector x and
each neuron in the lattice is connected to all the source nodes. The links (synapses)
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between the source nodes and the neurons are weighted, such that the j−th neuron
is associated with a synaptic-weight vector denoted by wj = [wj1, wj2, ..., wjm]

T ∈
Rm, j = 1, ..., L, where L is the total number of neurons. In [10], the tool has
been exploited to perform anomaly detection in online fashion. Specifically, they
divide their procedure into two main phases: learning phase and prediction phase.
For a selected time period, that is the learning period (e.g. one month), they
consider all the data as anomaly free and let the SOM adapts to the topology of the
events-points according to a modified version of the SOM algorithm. The resulting
clusters are named normal clusters. In the recognition phase, new events arrive in
the system and an anomaly is spotted if the considered event does not belong in a
normal cluster.

As just repeatedly stated in this thesis, the anomaly-free assumption made by
Novak et. al can be guaranteed only on data-set coming from a monitored scenario,
not in a real context. For this reason, we propose a similar clustering algorithm not
to perform Anomaly Detection but to perform events filtering, a preliminary phase
where the events are filtered online according to a precise definition of "recurrence",
section 4.1.1. This phase allows our system to maintain only such events with an
high probability of being normal: recurrent events. Thanks to this procedure it
is possible to switch the problem from unsupervised to semi-supervised where the
labels are partially available. As better discussed in the "Processing Pipeline" at
section 4.2, only at this stage, the anomalies are detected exploiting a statistical
approach. Differently from the study [10], the procedure here explained leverages
a Gas Growing Neural Network (GNG) structure to learn and maintain a set of
centroids in the events feature space in a totally unsupervised fashion. The set
of centroids can be seen as "behavioural prototypes", and the euclidean distance
from the event e and its nearest centroid can be seen as divergence metric of e

from the usual habit (Near Cluster Centroid approach). To allow the adaptation
be performed only on the recurrent events, the algorithm exploits a set of different
dictionaries, taking inspiration by the paper [70]. In subsection 4.1.5 we present
the GNG algorithm providing in section 4.1.1 an operative definition of recurrence
used in event filtering .

4.1.5 Gas Growing Neural Network

Growing Neural Gas is an artificial neural network that is trained using an unsu-
pervised learning algorithm.
The network can be seen as an undirected weighted graph of N nodes, the neurons
nj, each identified by a weight vector wj = [wj1, wj2, ..., wjm]

T ∈ Rm. When an in-
put x = [x1, x2, ..., xm]

T ∈ X, X ⊂ Rm, is presented to the network, the Euclidean
distance between the input and each node is calculated. This procedure divides the
feature space into a number of subregions: Xj = {x ∈ X : ||x−wj|| ≤ ||x−wi||,∀i},
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called Voronoi polyhedra, within which each data vector x is described by the corre-
sponding reference vector wj, called Best Matching Unit (BMU). When an input is
extracted, it induces a synaptic excitation detected by all the neurons in the graph,
adapting their weight vectors according to x. As shown in [54], the adaptation rule
can be described as a winner-takes-most instead of winner-takes-all rule:

∆wn1 = ϵb(x− wn1) (4.1)
∆wnj

= ϵn(x− wnj
), for all neighbors nj of n1 (4.2)

Simultaneously to the updating of the weights, other operations are performed as
follows.

Edge removing: be n1 and n2 respectively the first and second Best Matching
Units (BMUs). Such units develop a connection between each other called edge.
An edge is characterized by a parameter called age that reflects the frequency with
which the pair has been responsive in tandem; at each iteration it is reset to zero
whenever a connection occurs. When the age of a connection exceeds a pre-specified
lifetime T then the edge is removed.

Adding a new node: In contrast with SOM which considers a fixed number
of nodes, in the GNG network, new units are successively added to an initially
small network. Precisely, at each iteration, an error quantity is computed and
updated only for the neuron corresponding to the Best Matching Unit as follows:
error(n1) = error(n1)+ ||wn1−x||. If the number of input patterns generated is an
integer multiple of a parameter λ, a new node is nr is added to the network. The
insertion is performed as follows: be node nq the neuron with highest error and nf

the neighbor of nq with highest error variable, then the node nr is a neuron placed
halfway between nq and its neighbor nf , or better wr = 0.5(wq + wf ).

In the lines above, only the main steps of the GNG clustering algorithm are
summarized; a full explanation of the procedure can be found in [54].

4.1.6 Operative Definition of Recurrence

As possible to see from the previous section, GNG incrementally learns the topolog-
ical relations in a given input data set, dynamically adding and removing neurons
and connections, adapting itself to previously unseen input vectors. If GNG is
trained on event-points, the centroids represent the "most common behaviours" and
can be seen as "compressed representation" of the events themselves. These prop-
erties make GNG a good candidate as tool to learn behavioural habits enabling us
to formulate an operative definition of recurrence applicable as filtering rule. Such
definition has to take into account the following considerations:

• The filtering algorithm has to work in online fashion, being able to filter the
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events but also to adapt to new unseen events (that reflects for example a
change in behaviour). In other words we want that the algorithm is dynamic
in respect to time t.

• GNG has not to be trained on all the events generated but only on such events
that can be considered recurrent.

These context-related considerations are useful for the formulation of an operative
definition of "recurrence".

Before giving this definition, it is necessary to define some quantities useful for
the formalization.

1. Given an event e0 with starting time t which belongs to activity a, being
Sa(e0, t, r) the "neighbourhood of ray r of event e0 at time t" defined as
the set of event-points whose distance from the point e0 is lower than r or
Sa(e0, t, r) = {e ∈ Sa(t) : ||(e, e0)|| <= r} where || · || is the euclidean norm

2. Given the set Sa(e0, t, r), it is possible to define a set Date(Sa(e0, t, d)) con-
taining the dates on which the events in Sa(e0, t, d) have been occurred.

With these premises it is possible to give the following definition of "recurrence":

Definition 4.1.1. An event e0 is considered recurrent if:

1. The distance between the events e0 and its nearest centroid a time t is lower
than a certain threshold dth.

2. Being τmin and τmax two intervals of time, there exists a τ such that:

(a) The distance between the events e0 and its nearest centroid at time t+τ

is lower than a certain threshold dth;

(b) |Date(Sa(e0,t+τ,r))|
τ [days]

>= 0.4, where τ [day] means the quantity τ expressed in
days.

The first condition is a natural definition of recurrence. If an event e0 is rel-
atively close to the nearest centroid, there is an high probability that the event
belongs to a behavioural habit and an high number of events are contained within
the same neighborhood.
A very basic and practical example is given as follows. Be the event e0 described
by a mathematical tuple x = (p, d) ∈ R2 as done in [10]. Let’s assume that we
are monitoring the occupancy activities of a person in kitchen (a="Presence in
Kitchen"), using a monitoring system as the one considered here. Let’s assume as
well that the daily routine of this person consists in waking up regularly at 7:00
a.m. in the morning and staying in the kitchen for a certain amount of time to
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have breakfast and prepare to leave. In this case, for activity a, we will expect to
observe a clustered structure around (for example) position p ∈ [7.15, 7.20] and d,
duration, around 30 minutes with a consequent formation of a GNG centroid near
the center of this space region.

Differently from the first condition, the second condition introduces in the
definition the concept of time t and allows our system to be adaptive on new future
behaviours not observed in the past. According to this view, if the event e0 starting
at time t does not verify the first condition, it is not totally discarded but it is
buffered for a certain period in a local memory structure. At this point, the two
sub-conditions for the re-admission of the event on the recurrent set are:
2.a) The network has adapted, and at time t+τ the distance from e0 and its nearest
centroid is d < dth (according to previous definition).
2.b) we observe a similar behaviour also in the period around t, or formally, the
rate between the number of dates which present an event in the neighborhood of
ray d of e0 and number of days passed since e0 has occurred (τ [days]) is greater
than 40%. The condition 2.b is used to quantify the following concept: if a new
behaviour occurs repetitively at least in approximately 40% of the following days,
then this can be considered a new habit. In this sense choosing a minimum value
τmin allows us to define "recurrent" only those behaviours observed for at least a
certain amount of time, for example a week. Inversely fixing a τmax prevents the
Events Filter by the influence of too old events which cannot be considered any
longer a habit. A graphical interpretation of the condition 2.b) is provided in figure
4.1.

A practical implementation of a filtering algorithm based on this definition of
recurrence, is possible using an Unsupervised Dictionary Algorithm inspired by the
work done in [70]. In this paper, three different dictionaries have been defined to
perform vector quantization applied in Subject-Adaptive Unsupervised ECG Signal
Compression (SURF) using a GNG structure. The dictionaries are: the current dic-
tionary, the reserved dictionary and the updated dictionary. The rationale behind
this procedure can be summarized as follows: the current dictionary learns and
maintain a set of prototypes in the data feature space while the remaining two are
used for the evaluation of the new and unseen data. In this work a slightly modified
version of this method has been adopted in respect to the task. In this case, D1,
the current dictionary, contains the recurrent events which satisfy the condition
of recurrence given before; D3, the reserved dictionary, contains the not-recurrent
events discarded; D2, updated dictionary, contains both the recurrent and not re-
current events over a certain period. The main idea is the following: once an event
e is generated, if its distance in respect to its nearest centroid ne is lower than a
certain distance threshold dth (Condition 1), it is considered recurrent and it is put
on D1. Else, it is added both on D3 where, in a future time, the system will check
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Figure 4.1:VisualrepresentationofCondition2.bconsideringa2Dmathematicaldescriptionoftheevente →
x = (x1, x2).

periodically if the other two conditions (2.a, 2.b) are verified. After this check the
algorithm adds in any case the event on D2. A full version and explanation of the
algorithm can be found in 4.4.1.

4.2 Processing Pipeline

Considering the remarks made on the previous section, the processing pipeline can
be divided into three main phases: the "Feature Extraction" phase, "Filtering Phase"
and the "Classification Phase". A schematic view of the pipeline can be found in
4.2.

1. "Feature Extraction":

Input: Event time-stamp e

Output: Event-tuple x = (p, d, o)

Given a new event e of user ui, the mathematical description of e is performed
in this phase according to the definition of the type of anomalies made in 4.1.2.
By this definition, an appropriate mathematical description of e is the tuple
x = (p, d, o) ∈ R3. This three parameters correspond respectively to: p = the
relative position in the day of "start time", d = duration of the event, o =

occurrence. There is also an additional feature, a, that indicates the type of
activity of e and is used to associate e to its related learning process.

2. "Filtering Phase":

Input: Event-tuple x = (p, d, o)

Output: Updated dictionaries D1, D2, D3
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Once the tuple is computed, in this phase the event is filtered according
to the "operative definition of recurrence" defined in section 4.1.1. As just
anticipated, this filtering procedure is based on three different dictionaries
D1, D2, D3 used to implement the definition of recurrence. This phase makes
possible to drain in first instance the outliers and the points which do not
satisfy the definition of recurrence. Through filtering it possible to pass from
a completely unsupervised to semi-supervised context, excluding as well the
systemic anomalies existing in the dataset coming from problems as ill-sensors
or network issues (more details in section 3). There is a filtering phase and a
related event filter E for each activity of a given patient.

3. "Classification Phase:

Input: Event tuple x = (p, d, o), Dictionary D1

Output: Binary Value → Ad, Ao

∗ In classification phase the event is classified as Anomalous/ Non-Anomalous
in respect to duration (d) and occurrence (o) separately. The input is repre-
sented by the event-point x and the set of recurrent events contained in D1.
Differently from clustering approach used in the previous stage, in the Classi-
fication phase, a probabilistic model is build following a statistical approach.
This phase is divided in two main sub-phases: the training phase, and recog-
nition phase, each repeated as a new event arrives in the data-set. In the
training phase the Probability Density Function is estimated in respect to a
sub-set of the recurrent event-points contained in D1, so the ones expected
to be anomaly-free (labeled as 0). In this work a Multidimensional Kernel
Estimation has been chosen as estimating method.

Once the pdf has been estimated, an anomaly function score (ϕ) is defined.
This function reflects the likelihood that an event is described by a certain
vector of features x. After this stage, a set of anomalous points Xan are
generated according to an exogenous distribution Γα regulated by a tuning α

parameter. Such procedure allows to estimate a value of threshold th through
an optimization problem ("Dynamic Threshold Estimation" algorithm). In the
recognition phase the event is classified as anomalous if the score ϕ computed
on e is lower than th.

∗Ad = { True, if the event e has an anomalous duration; False, if not}, Ao = { True, if the
event e has an anomalous occurrence; False, if not}
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Figure 4.2:Schematicviewoftheprocessingpipeline

4.3 Feature Extraction

The event is properly described by a mathematical tuple:

e→

p

d

o

 =

 Position

Duration

Occurrence

 , with a ID of the activity (4.3)

The feature a indicates the activity of the event and it is used to associate the
event itself to the related learning process. For this reason the event itself can
be considered as a 3D mathematical object described by the tuple (p, d, o). This
formalism is very similar to the one proposed in [10] despite in that case only a (p, d)

description is considered because they are not interested in spotting anomalies of
the "occurrence".

• p, is the "position" parameter and it indicates the relative position during the
day of the "Starting Time". It is a decimal number whose value is bounded
in the interval 0 < p < 24. Given a starting time with the following syntax
hh:mm:ss which stands respectively for hours (hh), minutes (mm) and seconds
(ss), the parameter p is computed as following:

p =
(hh) · 3600 + (mm) · 60 + (ss)

24 · 3600
(4.4)

The introduction of the parameter p is necessary if we want our system be
adaptive in respect to the time position during the day.

• d, is the "duration" parameter and it indicates the duration in seconds of
the event. It is a positive decimal number whose value is obtained as the
difference between the end-time et and start-time st.
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• o is the occurrence parameter and it is an indicator of the inter-arrival fre-
quency of events for activity a over the last interval of time preceding the
event e. A high occurrence could be indicator of weirdness on the behaviour
of the patient as for example the presence of intruder or an illness. A natural
estimator of this quantity is represented by the inverse of the mean of inter-
arrival times of the events considered. From a mathematical point of view this
can be clarified as follows: given an event e0 with Start Time t and activity
ID a, and Sa = {e0, e1..} the set of events with ID equal to a earlier than
e0, be Ta the set of the starting times ti of the events ei ∈ Sa. Considering
these definitions it is possible to order the set Sa according to ti in a way
that ti > ti+1; this implies that the event ei occurs after the event ei+1 and
the event e1 has occurred just before the event e0 (the one considered). In
this way it is possible to define the subset S

(1h)
a = e0.., el which includes: all

the elements of Sa occurred at most 1 hour before the time t, plus the last
element, el, which correspond to the last event occurs at least 1 hour before
the time t. It is thus possible to define the mean of inter-arrival times and
the occurrence o of the event e0 as follows:

tmean =
l∑

i=0

(ti − ti+1)/l ei in S(1h)
a , (4.5)

o =
1

tmean

(4.6)

This definition holds on the assumption that the inter-arrival process of the
events is stationary as for example a Poisson process. The stationary property
is not always verified since the events in the stream can belong to different
behaviours. For this reason, after having computed the inter-arrival times,
the algorithm verifies the Poisson hypothesis (and so the stationary) through
Kolmogorov-Smirnov test, a nonparametric test which allows to know the
probability that a given sample of the data is produced by a certain theoretical
distribution. The test gives at output a score named p-value bounded in the
interval 0-1; the higher the score is, the more probable the sequence has been
generated by the given distribution. In this case the KS-test has been used
to estimate the p-value that the inter-arrival process is a Poisson Process
with a given rate "o" which is equivalent to test that the inter-arrival times of
the event sequence S

(1h)
a are distributed according to an exponential random

variable of mean tmean. If the p-value resulting from the KS-test is > 0.05

the Poisson Hypothesis is accepted, if not it is discarded. In this last case
o is simply estimated through a counting process of the events of the same
activity a occurred over the last hour.
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Figure 4.3:Exampleofevents3-Drepresentationoperatedafterfeatureextraction.Inthefigure,itisreportedthe
plotforactivity16 i.e.”Presenceinbedroom”foracertainpatient.
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4.4 Events filtering

As possible to see from the pictures above 4.3, the mathematical description oper-
ated in the Features Extraction Phase allows us to have a "topological" interpreta-
tion of the anomalies we are looking for. In this sense "Anomalies in duration" and
"Anomalies in occurrence" can just be seen as outliers in the 3D domain or simply
as points placed in low dense neighborhood.

This concept has been fully examined in 4.1.1 providing a definition of "recurrent
event". In the following we exploit such definition to characterize the filtering rule.

4.4.1 Adaptive Filtering Algorithm

As stated in 4.1.1, to practically implement the filtering rules in respect to the
definition of recurrence, three different Dictionaries have been created: D1 which
contains the recurrent events (and so the events that are passed to classification
phase as training set) occurred in the last period of time tD1 = 5 months; D3 which
contains the events that are temporally discarded occurred in the last period of
time tD3 = 1 month; D2 which contains all the events occurred in the last period
of time tD2 = 1 month.

Once an event e0 is generated at time t0, the algorithm checks if d(e0, ne) < dth.
If this is true, it is considered recurrent and it is added to D1, where GNG adapts
its topology to the new input vector.

If not, it is buffered on D3 while in any case it is added to D2. At this point, a
periodic checking is performed in respect to all the events e′ contained in dictionary
D3.
Let’s assume that t′ is the starting time of e′ and t0 is the current time. This checking
verifies that the distance d from the event e′ and its nearest centroid is d < dth. If
this condition is verified then the event e′ is readmitted to D1 (condition 2.a); if not,
thus d > dth, the algorithm checks condition 2.b creating the set Date(D2(e

′, t0, 0.2))

from the dictionary D2.
This set contains the dates (days) on which we observe a match with the event e′.
A match, in this case, means that at least one event on that date is located in a
neighborhood or ray r = 0.2 of e′ (considering the feature space is normalized [0,1]).
The number of elements of this set is called nmatch. If the rate between nmatch and
the number of days passed since e′ is occurred (nday = τ [days] = t0 − t′) is greater
than 40%, then the events contained in D2(e

′, t0, 0.2) are considered recurrent; the
events that belong to D2(e

′, t0, 0.2) and also to D3 are then moved to D1.
The filtering phase has to be performed considering the (p, d, o) representation

because of two main reasons. At first, it is possible to catch the correlation between
d and o dimensions, making "more recognizable" such events that present anomalies
both in duration and in occurrence (outliers in both dimensions). Secondly, we do
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not want that in the classification phase the statistics of anomalous events only in
one dimension interferes with the statistics of the normal events.

As possible to see in the pseudo-code 1, in the first part of the algorithm two
thresholds dmax and omax are defined; these two numbers are respectively the thresh-
old on "duration" and the threshold on "occurrence" and represent an upper bound
on the two dimensions beyond which an anomaly is spotted in any case. The values
represent extensive high values that can be chosen by the Service Care provider in
respect to a previous knowledge on the patient behaviour. These "hard limits" are
useful mainly for two reasons. At first, we need to be conservative in reporting the
alarms so if, for example, a patient stays in bathroom for more than 8 hours or
a fridge remains opened for more than 10 minutes, an anomaly has to be spotted
no matter his/her habits. Secondly, these two thresholds are used as a reference
to normalize the events-feature points and avoid numerical errors or dimensional
discrepancy (line 4 of 1).

In this way, as a new event e0 enters in the data-set at time t0 the following
operations are performed:

1. Check if d or o are above the maximum thresholds. If at least one of this
condition is true −→ Launch an anomaly (hard limits overcome)

2. Normalize the feature vector (p, d, o) with respect to the maximum thresholds;

3. If the event e is the first nfirst = 50, put it on dictionary D1

4. If not, check its "recurrence":

(a) Get the e’s nearest neuron ne, and the threshold dth(e) according to the
algorithm explained in algorithm 2.

(b) If the distance between the event e and the neuron ne is lower than the
threshold put it on dictionary D1 and trains the GNG

(c) If not, put it on D3

(a) For each event in e′ in D3:

i. τ = t0 − t′, where t0 is the current time and t′ is the starting time
ii. If the event e′ is buffered in D3 for a time τ > τmax then discarded

it;
iii. If the event e′ is buffered in D3 for a time τ < τmin then pass to

examine the next event;
iv. If τmin < τ < τmax then continue;
v. Check if e′ is recurrent according to point 4 and put it on D1 if the

condition is true;
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vi. If the conditions of the previous point are not satisfied, getting the
events in D2 such that the distance from e′ is below a fixed distance
threshold r = 0.2 → D2(e

′, t0, 0.2);
vii. Count how many different dates nmatch are present in the batch

nmatch = |Date(D2(e
′, t0, 0.2))| ;

viii. Being nday the number of the days of the time τ , if the rate nmatch

nday
>

0.4 move the events contained in D2(e
′, t0, 0.2)∩D3 to D1 and train

the GNG.

5. Put e in dictionary D2

The pseudo code of the algorithm is in Algorithm 1, while a graphical represen-
tation with flow charts is in figure 4.5.

4.4.2 Distance Threshold

The definition of recurrence brings with it a problem in the definition of the thresh-
old dth. This threshold can be a static value which does not vary with time. This
can be a valid solution if the designer of the algorithm owns a specific domain
knowledge on the dataset as in [70] but cannot be an optimal choice in terms of
adaptability. For this reason, in the filtering algorithm here presented, the thresh-
old is set dynamically and adapts to the topology of the dataset. As possible to
see in Algorithm 2, once a new event e enters in filtering process, the threshold on
distance dth is assigned dynamically with respect to the position of the nearest node
through a simple empirical rule. Basically, once the "filtering algorithm" computes
the node ne, dth is set equal to the distance between the node ne and its nearest
neighbor (n1). This is done for enhancing the adaptation of the system. In high
density regions we will observe neurons very close one tho the other. On the other
hand, in lower density regions neurons are more sparse. Setting a unique threshold
could lead to an excessively strict criteria for the admission of the events belonging
to these sparse regions, compromising the capability of the system of adapting also
to new unseen events and exploring a new area in the input data space.

Moreover, as possible to see in algorithm 2, two additional thresholds are set
respectively as lower and upper bound to prevent some inconveniences coming from
some specific cases of point distributions. Specifically, setting an upper bound
on the distance threshold prevents the filter to be too much lax in draining the
events; this is the case when the nearest neighbor node n1 is relatively far from ne,
leading to an high value of dth. On the other hand a lower bound on the distance
threshold prevents the filter from being too strict in the admission of the events to
D1. This is a relatively common phenomenon which occurs when the Gas Growing
Neural Network is trained on more and more events leading to a very dense neural
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Algorithm 1 Dynamic Filtering Algorithm
Input: Event e0 → x = (p, d, o), occurred at time t0

1: if (d > dmax or o > omax) then
2: e→ Anomaly
3: end if
4: NORMALIZATION:

p← p/24, d← d/dmax, o← o/omax

5: e→ Event_List
6: if |Event_List| < 50 then
7: e0 → D1

8: end if
9:

10: CHECK CONDITION 1:
11: ne = get_nearest_node(e0)
12: dth = get_threhsold_distance(ne)
13: d = ||x− ne||
14: if (d < dth) then
15: e→ D1

16: GNG.train(x)
17: else
18: e→ D3

19: end if
20:
21:
22: e→ D2

23:
24: CHECK CONDITION 2:
25: for e′ in D3 do
26: t = current_date
27: τ = t− date(e′)
28: if (τ < τMAX) AND (τ > τMIN) then
29: Repeat lines 10,11,12 for e′

30: if (d < dth) then
31: remove e′ from D3

32: e′ → D1

33: GNG.train(x)
34: else
35: Nmatch=|Date(D2(e

′, t, r = 0.2))|
36: Nday = τ [days]
37: if (Nmatch/Nday >= 0.4) then
38: each e in {D2(e

′, t, r = 0.2) ∩D3} → D1, train GNG on such points
39:
40: pnew = mean(D2(e

′, t, r = 0.2))
41: GNG.add_node(pnew)
42: end if
43: end if
44: end if
45: end for
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Algorithm 2 Threshold Computation algorithm
1: Function Get_Threshold:
2: dmin = 0.05
3: dmax = 0.2
4: for a new event e: do
5: ne=get_nearest_neighbor(e)
6: n1=get_nearest_neighbor(ne)
7: d=distance(ne,n1)
8: if d > dmax then
9: dth = dmax

10: else
11: dth = max(d, dmin)
12: end if
13: end for
14: return dth;

graph; in this case dth can degenerate into a very low value with the result that
many events are excluded and putted in D3. As general remark, it is possible to
state that the dynamic assignment of the threshold can be seen as feedback on
the algorithm to cope with some issues in the adaptability of the network. If the
network adapts too fast, the distance becomes lower and there is a stricter policy
for the admission of the event in D1; contrary, if the network is too slow in adapting,
the threshold is larger. Of course this is only an empirical consideration and for a
rigorous description further studies have to be carried out.

Practical implementation and tools The algorithm has to work in a real
environment so some empirical choices have to be made.

As regard to the hyper-parameters of the Gas Growing Network, we adopt the
following set of hyper-parameters: n_starting_node = 4, ϵb = 0.2650, ϵn = 0.0315,
max_age = 50, λ = 550, α = 0.5, d = 0.995, max_nodes = 600 well explained
in [54]. At this purpose, we use MDP Pyhton framework (The Modular toolkit
for Data Processing) which provides a complete implementation of GAS Growing
Neural Network. For more details visiting: [71].

To increase adaptability in respect to new behaviours, each time a new set of
events is readmitted from D3 to D1 (line 38) a new node of position equal to the
mean of such set is added to the node GNG graph (new habit inserted on the
network) (line 40-41).

For computational reasons, the checking at line 24 (CONDITION 2) is not per-
formed each time a new event arrives in the network but it is done periodically as
for example twice a day. Another policy adopted by the software consists in com-
pletely removing the events which exceed the hard limits omax, dmax because we do
not want our system adapt to such anomalies. In the first case, if o(e) > omax not
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only the event e is removed but also all the events in its "one-hour interval" (events
occurred one hour before as explained in equation 4.5).

4.5 Classification Phase

Once the filtering phase has been completed, the events contained in dictionary D1

satisfy the recurrence property and can therefore be assumed non-anomalous, tar-
geting them with a label 0 (negative). If in the filtering phase a 3D representation
of the events S = {e → x = (p, d, o)} has been considered, the specifics required
by the project (the anomalies on occurrence and duration have to be spotted with
two different alarms) impose that in the training phase two analyses have to be
performed: one analysis with regard to duration, considering Xd, the 2D projection
of S into the plan (p, d) and the other analysis with regard to occurrence consider-
ing Xo, the 2D projection of S into the plane (p, o). As just discussed in section 3,
differently from the filtering phase where only topological properties of the points
(clustering approach) have been used to select the recurrent events, in the classifica-
tion phase a probabilistic interpretation has been introduced (statistical approach).
This interpretation is rightful if the assumption made at the beginning is valid:
"anomalies represent a minority in respect to the rest of the data".

This strategy has been also adopted in other works which investigate Anomaly
Detection as [59], [60] and can be summed-up in the following three points: 1) pdf
estimation, 2) Anomaly score function computation 3) Thresholding. Roughly speak-
ing, this approach consists in defining for each point of the training set X a function
ϕ called Anomaly Score which reflects some properties of the pdf p(X) in such way
that the points placed in space regions with low values of the pdf (anomalies) are
differentiated from those placed in regions with greater p(X) (normal points). Once
a threshold th is chosen, the anomalous points are such points whose ϕ is greater
or lower (depending on the way ϕ is defined) than this threshold [67].

This procedure can be seen as a standard statistical technique for anomaly detec-
tion but it is far from being complete since no directions are given on the way the
function ϕ and the threshold th has to be chosen. In the following it is reported
the implementation adopted in this study:

• PDF estimation with Kernel: Given a 2D distribution resulting from the
events contained in D1, the probability density function is estimated through
a 2-D Kernel pdf which approximates the pdf in the given domain.

• Anomaly score function: In this respect we considered as anomaly score of a
point x′ function the function ϕ defined as following:

ϕ(x′) = P

(
x′
1

x′
2

)
= P (x′

1 − ϵ1 < x1 < x′
1 + ϵ1, x

′
2 − ϵ2 < x2 < x′

2 + ϵ2) (4.7)
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Figure 4.4:Exampleofthefilteringphase:D1 points(recurrent)arecolouredinblack,D3points
(not.recurrent)arecolouredinorange;inreditisunderlinednode-graphoftheGNG

Figure 4.5:Schematicviewofthefilteringphase
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This reflects the likelihood of finding x in a neighbor of x′ which, in practical
terms, is equivalent to the probability of having an event started at that time
position with a value of duration or occurrence in a certain interval.

• Thresholding: With the previous definition of ϕ(x) it is clear that anomalies
are points whose values of ϕ are below a certain threshold. Giving to ϕ a
probabilistic meaning, the choice of this threshold can be done also from the
user side according to an empirical evaluation as for example selecting only
such events whose ϕ is under a certain value as 0.002 or 0.001. Choosing a
priory this number can be very impractical in a real context also because the
function ϕ depends on the values of ϵ1 and ϵ2 (size of the square neighborhood).
For these reasons, this value has been computed through a procedure named
"Dynamic Threshold Selection" addressed in the next paragraph.

Kernel Density Estimation For the classification of a new event e0 → x =

(p0, d0, o0) passed through the filtering phase, a subset S(e0) is created selecting
from dictionary D1 only those events which belong to the same time-slot of e0.
Precisely this selection picks only those events whose starting time (parameter p)
lies in the range p0 ± 1, where p0 − 1 is the starting time of e0 minus 1 hour, and
p0 + 1 starting time of e0 plus 1 hour. To avoid numerical issues given by the fact
that p0 is a time value included in range [0,24], once S(e0) has been created, the
values of p are normalized in the range [0,2]; this conducts to p0 = 1.

At this point two parallel analyses are carried out: the first to detect "Anomalies
in occurrence" considering Xo,the second to detect "Anomalies in duration" consid-
ering Xd. Being these two analyses identical from the theoretical point of view, from
now on we use X = {(p, x2)} to define the sets Xd and Xo, considering x2 = {d, o}.
A visual representation of the projected X domain is represented in figure 4.6. Once
X is created, the 2D pdf-estimation is operated through KDE, kernel density es-
timation, a non - parametric statistical method which allows the estimation p(X)

through the sum of different Bi-dimensional Gaussian Kernels better described in
[72]. This method has been implemented through the library "statsmodels" of Pyh-
ton which furnishes a non fft-based approach for KDE providing as well useful tools
to tune important parameters in Kernel Density Estimation as the for example
Band-with and the shape of kernels.

Anomaly score Function Given a pdf p(X) on set X, the function ϕ used for
anomaly discrimination of the point x′ is:

ϕ(x’) = ϕ

(
p′

x′
2

)
= P (p′ − ϵ1 < p < p′ + ϵ1, x

′
2 − ϵ2 < x2 < x′

2 + ϵ2),with x2 = {p, o}

(4.8)
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Figure 4.6:Eventpointsprojectedin(p,o)=(position,occurrence)
domainforoccurrenceanalysis.Theparameterp isnormalized[0,2]
sinceeventscontainedina2hoursintervalareconsidered.

Figure 4.7:Anomalyscorecomputedin(p,o)do-
main.

From a mathematical point of view this is equivalent to calculate the probability
that a point x is contained in a square of vertices: {A = (p′ − ϵ1, x

′
2 − ϵ2), B =

(p′ − ϵ1, x
′
2 + ϵ2), C = (p′ + ϵ1, x

′
2 + ϵ2), D = (p′ + ϵ1, x

′
2 − ϵ2)} with the result that

ϕ(x′) can be simply estimated through a sum/differences of Cumulative Density
Functions (CDF or FX(x)) calculated on the vertices. From a trivial geometric
consideration this function can be calculated as following:

ϕ(x′) = FX(C)− FX(D)− FX(A) + FX(B) (4.9)

The value ϵ1 referred to p is set equal to ϵ1 = 0.1 which is equivalent to 6 min.
in 24h time domain; in respect to ϵ2 we have set ϵ2 = 1 for occurrence analysis and
ϵ2 = dmax/100 for duration analysis. In figure 4.7, the Anomaly Score on a (p,o)
domain is represented.

Threshold Selection Once ϕ(x) has been computed ∀x ∈ X, the threshold
can be set manually by an external user or can be selected dynamically through a
procedure called Dynamic threshold assignment. Due to the "recurrence property",
events in X are supposed free from anomalies with the consequence that the thresh-
old th has to be set in such way that the number of x ∈ X such that ϕ(x) > th is
maximized. Considering only this criteria, a trivial solution of this maximization
problem is th = 0 which is of course incorrect. For this reason it is necessary to
introduce in the problem a counterbalance given by the introduction of an artificial
distribution Xan, complementary to the one observed in X. Being these points
generated by an exogenous distribution, the classification procedure have to recog-
nize them as "anomalies" → ϕ(xan) < th. Before presenting the algorithm some
definitions are in order.
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Definition 4.5.1. Given the feature x2 = {d, o}, be X[x2] = {x2|x = (p, x2) &

x ∈ X} the set of the features x2 in X. Be p(x2) the one-dimensional distribution
estimated through kernel method on X[x2]

Definition 4.5.2. Given a parameter 0 < α < 1, α ∈ R, be Γα a one-dimensional
gamma random-variable of parameters k (shape parameter) and θ (scale parameter)
whose distribution is defined by the function γα(x, k, θ) =

1
θkΓ(k)

xk−1e−(x
θ
) and such

that the area of the intersection surface under the two functions and p(x2) is equal
to α.

This means the following integral:∫ +∞

0

(min[γα(x2), p(x2)]dx2) = α (4.10)

The distribution of Γα, can be estimated imposing a condition on the variance
that, in a gamma distribution, is related to the parameters k and θ by: var(Γα) =

kθ2.If we want the variance of Γα is equal to the variance of X[x2], the problem can
be formalized as following:var(Γα) = kθ2 = var(X[x2])

mink,θ |
∫ +∞
0

(min[γα(x2), p(x2)]dx2)− α|

Once the parameters k, θ are estimated, it is possible to create the distribution Xan,
generating the parameter x2 through γα(x2, k, θ) and the parameter p through a
uniform random variable U([0, 2]). At this point the problem of finding an optimum
threshold th can be addressed as presented in the following lines. Be Xtot = {X ∪
Xan} the entire training set and ltot = {l(X) ∪ l(Xan)} the labels, where l(X) = 0

and l(Xan) = 1 :

thopt = argmax
th

F1(ltot,1{ϕ(Xtot) < th}) (4.11)

where 1 is the indicator function and F1 is the f1-score defined as F1 =
2·precision·recall
precision+recall

between the labels ltot and the classifications 1{ϕ(Xtot) < th}.
The α parameter is a hyper-parameter which can be tuned by the user. In

practical terms finding a value for this parameter is equivalent to give a definition
of anomaly. The higher α is, the more similar the distribution γα(x) is in respect to
the estimated not-anomalous p(X); so it is more probable that an event is classified
as anomalous. Inversely a lower α conducts to a γα(x) very different from p(X) so
it is less probable that an event is classified as anomalous because the definition
of anomaly is less strict. In this way, the service provider can tune this parameter
online according to the real feedbacks observed in reality.
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Figure 4.8:ExampleofexogenousdistributionΓα wihtα = 0.01

Recognition phase In the previous paragraphs, the training phase is presented.
This phase is executed each time a new event is generated and it is repeated both
for the occurrence and for the duration analysis giving a "classifier" as output. This
classifier can be defined by a pair (ϕ(X), th) respectively, anomaly score function
and its related threshold. In the recognition phase the event e0 → x = (p0, d0, o0)

is therefore classified as following:

ypred(d) = 1{ϕd([p0, d0]) < thd} (4.12)
ypred(o) = 1{ϕo([p0, o0]) < tho} (4.13)

where ypred(d) and ypred(o) are respectively the predictions made for duration and
for occurrence. Being the training phase performed on a sub set of the recurrent
events contained in D1, X, it is possible that in some cases this set is very poorly
populated because very few events occur in that given time slot compromising the
validity of all the statistics computed in the classification phase. To avoid such
problem, in this case the classification through probabilistic approach is performed
only if X counts a certain number of events: |X| > 30. Differently, if this condition
is not satisfied, no classification is performed, and the output of the filtering phase
can be seen as the only valid result. If the event is considered recurrent (inserted
in D1) then the event is considered not anomalous; inversely if the event is not
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recurrent (it is thus inserted in D3) then it is considered as anomaly and signaled
to the Reasoner unit’s as Unusual Activity.

4.6 Tests for performances assessment

Working in an unsupervised setting where no label is available, the testing phase
is crucial to properly assess the confidence of the proposed Anomaly Detection
Algorithm. The tests discussed in the following have been designed to show two
main properties of the system. The first property is the "reliability" intended as
the capacity of the system of recognizing as anomalous events that are anomalous
indeed (True Positive Score) and as Non Anomalous events that are that are, in fact,
non anomalous (True Negative Score). The second property is the "adaptability"
intended as the capacity of the system to adapt in respect to the habits of the
patient. All the tests have to be conducted both for duration and occurrence and
in respect to all the activities and patients considered in the platform.

Despite differences in the mechanisms, all the tests cited share the same baseline.
From the whole list of events S occurred for a given patient, it is extracted the
subset Sa defined as the set of events occurred in respect to the activity a. The set
Sa is split into two parts Sa1 and Sa2, respectively the 85% and 15% of the entire
set. The first part is given in input to an Event Filter, Ea1 which drains the events
in Sa1 furnishing at the output a set of recurrent events D1(Sa1). A schematic view
of the tests is available on Fig. 4.11.

Reliability Tests These tests aim at providing an estimation of True Positive
Score and True Negative Score. To properly compute these quantities two different
tests have been modeled respectively: "No Anomaly Test" and "Artificial Anomaly
Test" performed for the classification process for duration and for occurrence.

• "No Anomaly Test": In the first part of the test, the set Sa2 is filtered with
a new empty filter Ea2 . The events contained in D1(Sa2) are given in input to
Ea and then classified through the classification process. The filtering process
performed by Ea2 maintains only the recurrent events so we can suppose such
events being free from anomalies and can be labelled as 0. The result of the
test is given by the percentage of events classified as "Non anomalous" on the
total of events contained in D1(Sa2).

• "Artificial Anomaly Test": This analysis furnishes at the output a possible
estimation of the True Positive Score. At the beginning of the test, a certain
number nan of anomalous events are generated artificially (San) and then
inserted into a stream of recurrent events coming from the set D1(Sa). The
whole stream is given in input to the filter Ea1 and the anomalous artificial
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events are classified. The procedure to generate the artificial anomalies is
described below:

– Test for duration: all the events belonging to the set Sa are subdivided
in 12 time classes. In respect to the distribution of each subset Xd,i =

{(p, d)}, it is computed an anomalous distribution γα,i(k, θ) with the
same procedure discussed before in the training phase 4.8. Given a time
class j, an anomalous event is generated at the beginning of this class
with duration d given by γα,j(k, θ). An anomalous event is inserted in a
different time class randomly chosen once every 5 days. In this test the
number of anomalous events injected are n = 25 and the result is given
by the percentage of "Anomalous" events classified as "Anomalous".

– Test for occurrence: As in the previous case the time class approach
has been adopted computing for each time class i an anomalous distribu-
tion γα,i(k, θ) in respect to the distribution of each subset Xo,i = {(p, o)}
with the same procedure discussed in the training phase. Differently
from the duration test in this case for a given a time class j, a sequence
of anomalous events is created according to an anomalous occurrence
oj, generated from the distribution γα,j(k, θ). Effectively once oj is com-
puted, the events in the anomalous sequence {e0, e1...en} are generated
with inter-arrival time equal to an exponential random variable of mean
equal to 1/oj (∆t(ei, ei+1) ∼ Exp(λ = oj)) for the whole duration of the
time class (Poisson arrival).
An anomalous sequence is inserted in a different time class randomly
chosen once every 5 days. In this test the number of anomalous sequences
injected are n = 25 and the result is given by the percentage of sequence
where at least one event is classified as "Anomalous".

Adaptability Tests Different from the first ones, this kind of tests have been
designed to assess the adaptability of our system to new anomalous behaviors. The
test is based on a simple consideration: if an anomaly happens repetitively in time,
at a certain point this has not to be longer observed as an anomaly.

• "Adaptability for high occurrence": The setting of this test is very similar
to the one proposed in the previous "Artificial Anomaly Test". The anomalous
sequences are created in the same manner using an anomalous distribution
γα,j but they are inserted on a fixed the time class j. Once the anomalous
sequences are generated in reference to this class, they are inserted once a
day in the stream of events. To asses the adaptability two parallel process
are started: the first in which the adaptation filtering is enabled, the other in
which the adaptation is disabled. In the second case the initial distribution
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X on which the training process is performed does not change with time, so
we will expect that in the first process at certain point the anomalies will be
recognized as normal while in the second the anomalies are always recognized.

• "Adaptability Test for duration":

– Adaptability for high duration: The setting of this test is identical
of the previous one except from the fact that an anomaly is represented
by a single event with anomalous duration.

– Adaptability for range duration: This test aims at testing the ability
of our system in recognizing unusual events with duration in a certain
range. The setting of this test is a bit different from the other ones: being
dm the maximum value of duration of the events in the set Sa1, the events
whose duration within the interval [0.3 · dm, 0.7 · dm] are firstly excluded
from the dataset. The remaining events are given in input to an empty
filter Ea3 which adapts only on events with durations out of this range.
At this point a stream of all anomalous events Srange is generated with
duration equal to 0.3·dm+0.7·dm

2
. The inter-arrival time between the events

in Srange is exponential with mean tmean = 4 hours. Since Ea3 has "never
learned" events in range [0.3 · dm, 0.7 · dm] we expect that event Srange

will be classified as anomalous until a certain time, when the learning
framework will add them to the recurrent class. From there, they will be
classified as normal. Besides proving adaptability this test shows as well
the robustness of our system in identifying anomalous events of unseen
durations as for example too short duration.

Multi Patient Test In conclusion, to check the adaptability from a gen-
eral point of view, a test has been proposed considering a set of patients {ui}
where u0 is the starting patient. Initially an event-filter Ea1(u0) filters the
events of u0 patient related to the activity a, then all the events contained
in the D1, D2, D3 are removed maintaining only the Neuron Graph of the
Gas Growing Neural Network. At this point a classification process is started
inserting sequentially the events contained in Sa2 of the next user ui. This
procedure is repeated each time a patient is changed. If the system adapts
to the habits of each user, we will observe a sudden sharp increment in the
number of anomalies detected as events of a different new patient are inserted.
Then we expect to observe a more and more flattening trend with the passing
of time since the system adapts to the habits of the new patient.
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Figure 4.9:Highoccurrencetest:inredtheeventsoftheanomaloussequenceinjectedintheeventsstream

Figure 4.10:Highdurationtest:inredtheanomalousevent

Figure 4.11:Schemeofthetests
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5
Results

In the following, the main results are summarized. As discussed in the previous
chapter, two types of metric will be discussed: "reliability" metrics to show the
effective performances of the system and "adaptability" metrics to show the capacity
of our system to adapt to the patient’s habit. In the table 3.2 presented in chapter
3, the "input" data of all the patients (IDs reported on the rows) are collected
including the number of events available for each activity and the duration of the
monitoring period (last column). In the following, this table will be used often to
explain some outcomes.

A visual exemplification of the the classification process is reported in the fol-
lowing figure 5.1. In this particular situation, an anomalous sequence of events is
considered (anomalous occurrence); in the x-axis the time line is reported and the
events are indicated through the scatters. The black-dashed line represents the val-
ues of the dynamic threshold corresponding to the event (th) while the orange one
corresponds the anomaly scores (ϕ) in logarithmic scale. As can be seen from the
plot, as the anomaly scores ϕ goes under the threshold the value of the threshold,
the events are spotted as anomalous (red colour of the scatters).

5.0.1 Reliability Tests

In the tables 5.2 5.1, the results of the the reliability tests are summarized. On the
rows, the patients IDs are reported while the columns indicate the different activities
considered so far in Ticuro Platform: a = { ’Presence in Kitchen’=21,’Presence in
Bathroom’=8, ’Presence in Bedroom’=16, ’Presence in Hallway’=17, ’Presence in
Sitting Room’=22, ’Presence Outside’=7, ’Time Open Fridge’=19 }.

The α chosen for the analysis is equal to 0.01 and it is used both for the training
phase both for generating the artificial anomalies in different time classes. The time

55



Figure 5.1:Classificationprocess:theorangelinecorrespondstotheanomalyscorewhiletheblackline
tothedynamicthreshold

class j = {1, 2, ..12}, in which the anomalies are inserted, uniformly at random. In
this case, if the time class is under-populated, or in other words, the number of
events in time class j is < 30, the anomaly distribution is always a gamma but the
parameters (k, θ) are fixed.

In the tables 5.1 5.2, for each column it is shown the "True Negative Rate" (TNR)
and the "True Positive Rate" (TPR).
TNR is referred to the "No anomaly Test" and is obtained with the following expres-
sion: TNR = |{classification(e)==0}|

|D1(Sa2)| , where the numerator represents the amount of
events e that has been classified as non anomalous and the total number of events,
D1(Sa2). TPR is referred to Artificial Anomaly test and represents the percentage
of anomalies classified as anomalous (positive) in respect to the number the total
number of anomalies injected in the event stream. TPR is calculated differently in
respect to the type of analysis.
For duration analysis: TPR = |[classification(e)==1]|

|San| where the numerator represents
the number of anomalous events classified as 1 and the denominator represents the
total number of anomalous events inserted.
Differently, for the occurrence analysis, TPR is calculated as
TPR = |s={e0,e1...ek}|∃e:classification(e)==1|

|{s}| where the numerator represents the number
of anomalous sequences where at least one event has been classified as 1 while the
denominator represents the total number of anomalous sequences.
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Activity 21 8 16 7 19 22 17
Test TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR

364 1 0.92 0.97 0.84 1.00 0.92 0.93 0.72 1 0.8 0.97 0.8

323 1 0.92 0.98 0.92 1.00 0.92 0.79 0.6 0.97 1 1 0.84

286 0.99 0.88 0.97 0.8 0.96 0.84 0.58 0.92 0.92 0.96 0.98 0.84

285 0.99 0.76 1 1 1.00 0.76 0.58 0.64 0.98 1

385 0.88 0.8 0.99 0.8 0.98 0.80 0.79 0.48 0.96 0.92 0.89 0.92

525 1 0.92 0.99 0.6 1.00 0.64 0.96 0.76 0.91 0.8 0.99 0.96

444 0.96 0.88 0.99 0.96 0.98 0.92 0.63 0.76 0.89 0.92 0.98 0.92 0.94 0.84

303 0.99 0.84 0.84 1 0.90 0.88 0.6 0.88 0.96 1 0.93 0.88

323 1 0.92 0.98 0.92 1.00 0.92 0.79 0.6 0.97 1 1 0.84

523 1 0.88 0.99 0.8 1.00 0.68 0.91 0.72 0.88 0.96 1 0.84

424 0.96 0.68 0.94 0.8 0.94 0.92 0.95 0.68

526 0.97 0.76 0.98 0.88 0.95 0.72 0.96 0.68 0.8 0.96 0.68

694 0.99 0.72 0.94 0.84

695 0.86 0.72 0.89 0.80

705 0.94 0.72 1.00 0.76 0.88 0.72 1 0.64

563 0.97 0.84 0.98 0.84 0.95 0.68 0.59 0.88 0.94 0.92 1 0.6

585 0.95 0.84 0.94 0.84 1.00 0.76 0.8 0.72

Median 0.99 0.84 0.98 0.84 0.98 0.80 0.79 0.72 0.95 0.96 0.99 0.8 0.97 0.84
Mean 0.97 0.83 0.96 0.848 0.97 0.81 0.78 0.71 0.94 0.93 0.96 0.78 0.96 0.83

Table 5.1:TrueNegativeRate(TNR)andTruepositiveRate(TPR)for’OccurenceAnalysis’

As can be seen from above, TPR and and TNR have been obtained with different
tests and are calculated in different ways in respect to the cases interested. For this
reason, performance metrics as Recall, Precision are misleading in this context and
will not be considered.

In respect to duration analysis, figure 5.2, it is possible to see that our system
can be considered robust for both the tests. Specifically TPR rate is, except for one
case, always greater than 75% for each activity and patient. At thee same time, the
values of TNR, whose median is always greater than 90% for each activity, prove
that the system is robust to false alarms as well. This result is particularly good if
we consider the following aspects. At first, in the training phase, the normal and
the anomalous distribution has certain "common area" represented by α, implying
that a certain value of False Negative is expected. Secondly, the recurrent events
in D1(Sa2), used in the No Anomaly Test, are effectively "future events" so it is
possible that new habits of the patient have been captured by the filtering process
E2.

As regards to occurrence analysis, very similar outcomes can be observed. The
TPR rate is higher than 80% in almost all the considered cases, preserving at the
same time a quite good score for what concerns TNR.
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Activity 21 8 16 7 19 22 17
Test TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR

364 1 1 0.97 0.72 1.00 1.00 0.95 0.64 1 0.88 1 0.84

323 1 1 0.84 0.96 0.96 0.88 0.93 0.64 0.98 0.88 1 0.96

286 0.92 0.88 0.96 0.8 0.96 0.84 0.83 0.52 0.95 0.96 0.97 0.84

285 1 0.88 1 1 1.00 0.88 0.95 0.36 0.99 1

385 0.98 0.88 0.98 1 0.98 0.80 0.88 0.64 0.98 0.96 0.99 0.84

525 0.96 0.84 1 0.92 0.98 1.00 0.96 0.76 0.96 0.96 0.97 0.96

444 0.99 0.92 1 1 0.99 0.92 0.85 0.36 0.96 0.92 0.96 0.8 0.97 0.88

303 0.98 0.92 0.98 1 0.96 0.84 0.96 0.84 0.96 0.96 0.97 0.8

323 1 1 0.84 0.96 0.96 0.88 0.93 0.64 0.98 0.88 1 0.96

523 0.98 0.84 0.97 0.96 0.98 1.00 0.86 0.6 0.88 1 0.96 0.76

424 0.97 1 0.99 0.96 0.96 0.80 0.95 0.68

526 0.98 1 0.98 0.8 0.96 0.96 0.97 0.68 1 0.95 0.96

694 1 0.96 0.97 0.92

695 0.92 0.72 0.99 0.84

705 0.97 0.88 0.93 0.92 0.82 0.32 0.98 0.96

563 0.97 0.92 0.98 0.92 0.99 0.80 0.71 0.36 0.96 1 0.98 0.48

585 0.73 0.52 0.92 0.88 0.94 0.76 0.75 0.52

Median 0.98 0.92 0.98 0.96 0.97 0.88 0.93 0.64 0.96 0.96 0.96 0.8 0.985 0.86
Mean 0.96 0.8925 0.95 0.92 0.976 0.88 0.89 0.57 0.96 0.95 0.94 0.77 0.985 0.885

Table 5.2:TrueNegativeRate(TNR)andTruepositiveRate(TPR)for’DurationAnalysis’

As possible to see in both the two analysis, the activity 7 exhibits the lowest
performances for both analyses. This can be explained by the values contained in
table 3.2, where it is possible to see that activity 7 counts the lowest number of
events compared to the others activities. This fact can condition the adaptability
of the event filter with the consequent inability of the system to compute valid
statistics for the classification phase. The relationship between scores and number
of events is also confirmed by the fact that the patients who present an higher
number of events for activity 7, present at same time an higher scores both for
duration and occurrence analyses.

All the tests cited above have been conducted considering a single value of α =

0.01. In this direction, we conduct other tests on a subset of patients considering
another value of α, namely α = 0.005 and the results are reported in 5.3 and 5.4.
As expected, if the value of alpha parameter is decreased, the TNR score slightly
augments in almost every patient. This is caused by the fact that decreasing α,
we provide a "less strict definition of anomaly to the system" and the threshold
th is calibrated to recognize more different anomalies in respect to the normal
distribution.
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Activity 21 8 16 7 19 22 17
Alpha 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005

285 0.995 0.998 0.995 0.998 0.998 0.998 0.947 0.947 0.993 0.996

286 0.917 0.930 0.960 0.963 0.965 0.965 0.828 0.828 0.948 0.952 0.968 0.973

323 0.998 0.998 0.838 0.843 0.965 0.973 0.929 0.929 0.984 0.984 1 1

525 0.962 0.968 0.995 0.995 0.980 0.982 0.959 0.959 0.962 0.962 0.968 0.977

585 0.733 0.819 0.925 0.925 0.939 0.955 0.75 0.75

Median 0.962 0.968 0.960 0.963 0.965 0.973 0.938 0.938 0.973 0.973 0.859 0.863 0.984 0.986

Mean 0.921 0.943 0.943 0.945 0.969 0.975 0.916 0.916 0.972 0.974 0.859 0.863 0.984 0.986

Table 5.3:OccurenceAnalysis:acomparisonofTNRperformancesbetweentwovaluesofα = {0.01, 0.005}

Activity 21 8 16 7 19 22 17
Alpha 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005

285 0.990 0.998 0.998 0.998 1.000 1.000 0.579 0.737 0.985 0.987

286 0.993 0.993 0.972 0.978 0.958 0.973 0.578 0.562 0.92 0.928 0.98 0.98

323 1.000 1.000 0.983 0.983 1.000 0.998 0.786 0.833 0.966 0.969 0.997 1

525 1.000 1.000 0.993 0.993 1.000 1.000 0.959 0.979 0.906 0.925 0.992 0.998

585 0.952 0.952 0.943 0.925 1.000 1.000 0.8 0.8

Median 0.993 0.998 0.983 0.983 1.000 1.000 0.682 0.785 0.943 0.948 0.896 0.899 0.988 0.99
Mean 0.987 0.989 0.978 0.975 0.992 0.994 0.726 0.778 0.944 0.952 0.896 0.899 0.988 0.99

Table 5.4:DurationAnalysis:acomparisonofTNRperformancesbetweentwovaluesofα = {0.01, 0.005}

Global Threshold As just stated, the parameter α is used as reference for
the dynamic computation of the threshold th on the anomaly score ϕ. Possibly,
the threshold can be also fixed not considering the dynamic assignation. In the
following, we assess the relation between the value of the threshold and the related
performances (TPR and TNR rate). Although the classification process is per-
formed in respect to the time class of the event e and differs according to the type
of activities and patients, the following two ROC curves show that it is possible to
identify a range of "reasonable" values of global thresholds maintaining a consistent
performance. These two plots have been designed contemplating all the events of
all the activities for every patient examined in "No Anomaly Test" and "Artificial
Anomaly Test". Specifically we considered as Negative set the union of the events
contained in D1(Sa2) ("No Anomaly Test") of each single patient, while we consider
as Positive the anomalous events artificially generated in "Artificial Anomaly Test"
(with alpha = 0.01). During the tests, the value of the anomaly score ϕ(e) has been
saved for each single event, using these data as input to draw the ROC curve. Of
course occurrence analysis and duration analysis have been split.

As possible to see in the graphs 5.2 and 5.3, for occurrence analysis, reasonable
values of the threshold are 0.001 < th < 0.005, which show the best compromise in
terms of TNR and TPR scores. In duration analysis, instead, an optimal range can
be found between 0.001 < th < 0.016. As indicated before, these are just indications
for a clever assignment of a global threshold in case the dynamic assignment through
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α is not possible.

5.0.2 Adaptability Tests

As in the previous analysis, the adaptability tests have been conducted with respect
to all the activities and patients, considering as well 3 different seeds for each
case. As explained before, for each single test two parallel assessments have been
conducted: the first with a filter which adapts to the new events and the second
with a filter that does not update, performing the classification always in respect
to the initial distribution.

Figure 5.4:Adaptabilityinrespectto”highoccurrencetest”;Results
foractivitya = 8

Figure 5.5:Adaptabilityinrespect”highoccurrencetest”;Resultsfor
activitya = 21

To investigate "Adaptability for high occurrence", an anomaly sequence of
occurrence oj = γα,j(k, θ) is inserted in time class j = 11 (22:00-00:00) with daily
cadence for n = 25 days. As possible to see in the graphs 7.8, 7.7, in these tests
two scores have been considered: R1 and R2 defined in what follows.
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Being i the index of the anomalous sequence si, R1 is defined as the percent-
age of anomalous events detected as anomalous in the single sequence: R1(i) =
|{classification(e∈si)==1|}

|{e∈si}| . This score is reported below in the graphs and is expected
to be < 1 since the first part of the anomalous events in the sequence is not recog-
nized as anomalous.
Differently R2 (reported above in the graphs) is a cumulative value and for the
sequence si represents the percentage of events detected as anomalous up to i

in respect to the total of amount anomalous events inserted up to i: R2(i) =∑i
k=0 |{classification(e∈sk)==1}|∑i

k=0 |{e∈sk}|
.

Considering figure 7.7,7.8, in the x-axis it is indicated the progressive index of
the sequence, while, the two scores are indicated in y-axis, R2 above, R1 below.
The values plotted on the charts are the median values of the scores obtained for
each different patient, with the related 25% and 75% percentile. The results are
reported for activities 21 and 8 (5.7 and 5.6 respectively) while the plots for the
other activities can be found in the appendix.

As expected, both the scores related to the updated classification process (indi-
cated in red) decrease with the progress of time; this is related to the fact that the
filtering process has adapted to the new behaviours till the point at which no events
in the sequence are detected as anomalous i.e. R1(i) = 0 (complete adaptation).
Inversely, the not-updated classification process shows quite steady performances
in respect to both the metrics because it continues to recognize as anomalies the
events contained in inserted sequences.

To investigate "Adaptability for high duration", an anomalous event with
duration dj = γα,j(k, θ) is inserted in time class j = 8 (16:00-18:00) with daily
cadence for n = 25 days. In contrast with the previous case, only one score, R, has
been considered in this context. Being i the index of the anomalous event ei, the
score is defined as the percentage of anomalous events detected as anomalous in
respect to the total amount of anomalous events inserted up to the time i: R(i) =
|{classification(ei∈{e0,e1,..ei})==1}|

|{e0,e1,..ei}| . In the x-axis, it is indicated the progressive index of
the event, while in the y-axis the score R(i). The results are reported for activities
21 and 8 (5.7, 5.6) while the plots for the other activities can be found in the
appendix 7.1.

As in the previous cases the values indicated on the graph is a median value in re-
spect to the scores obtained for each different patient with the related 25% and 75%

percentile. A decreasing in the graph corresponds to mis-classification (anomaly con-
sidered as normal) while an increasing correspond to a correct classification. Also
in this case, the score related to the updated classification process (indicated with
red) decrease with the progress of time while the not updated classification process
shows quite steady around 1.
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Figure 5.6:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 8

Figure 5.7:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 21

The third and last test to assess Duration Adaptability is the Adaptability for
range duration whose outcomes are shown in plot 5.8. As in the previous test, the
index of the event is indicated on x-axis while the score, computed as before, is
reported on y-axis.

In this case only the updated process has been considered and in the graph it is
possible to see the median result considering all the activities and all the patients.

The trend observed confirms the expectations. Specifically, the fact that the
curve remains stable around 1 for the first part of the event streams shows a good
capacity of the architecture to detect anomalies in duration not only in respect to
"high duration" but more generally in respect to unseen durations. In addition the
fact that the median of the score declines with time verifies the adaptability of the
system also in this context.

Figure 5.8:Testfor”RangeDuration”
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Adaptability of the filtering process The filtering process based on GAS
Growing Neural Network clustering technique exploits 3 different dictionaries: D1,
D2, D3. In D3 dictionary the "non-recurrent" events are contained. If the filter
adapts to the patient’s habits we expect to observe a pick in the number of events
buffered in D3 as soon as the process is started, with a consequent decreasing once
the filter starts to adapt (events transferred from D3 to D1). This trend can be
observed in the graphs below where the number of events in D3 in figure 5.9 is
plotted against the the time for two different activities.

Figure 5.9:NumberofeventscontainedinD3 asfunctionoftime
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Multi patient test The last test proposed aims at verifying adaptability in
respect to data coming from several patients. The results of this test are summed up
in figure 5.10 where 5 different patients: 286, 323, 563, 526, 525 have been considered
in this order in respect to activity a = 21. Initially an event filter E ′ has been
trained on the events of patient 285 then, as discussed in section 4.6, all the events
are removed from the dictionary and only the graph of the GAS network is left.
This procedure is repeated each time a patient is changed. In the x-axis the time
line is depicted, while the y-axis represents the number of anomalies detected up
that time by the system. Even in this case the expectations have been verified as
possible to see in the graph. An initial rapid growth of the curve (relative high
value of the derivative) is followed by a more and more stable trend as time pass.
It is possible to see that for patient 323 the adaptation does not occur. This can
be explained by the fact that this patient presents a "crazy sensor" which generated
anomalies in the occurrence as shown by the fact that in a very short time (around
middle of February 2019) the curve augments around 100 units in a very short time.

Figure 5.10:Multi-patientstestresults
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6
Conclusion

In this thesis, the problem of Anomaly detection in Behavioural Monitoring has
been addressed. Specifically, a new software has been developed for Ticuro Re-
ply, a Digital Platform created by Healthy Reply to furnish Smart Assisted Living
Services to elderly people who live alone (Elderly Care Project). The aim of the
project consists in using a new data-driven approach to spot anomalies in occu-
pancy activities of daily living ("Presence in a certain room" or "Time of usage of
an object") of senior patients monitored through environmental sensors (PIR and
Pressure Sensors). Differently from other existing studies which have investigated
the problem of spotting anomalies in behavioural patterns, in this work, anomalies
related to the single activity (or event) are contemplated. Specifically the algorithm
has been designed to recognize three main types of anomalies related to the single
activity: "Anomaly in Duration", an activity last for too long or that is too short;
"Anomaly in Occurrence", repetition of a given type of activity for too many times
over a certain interval, "Unusual Activity". All these anomalies are connected to a
specific interface of alarms defined on Ticuro Platform.

The dataset has been generated in a real Smart Home Scenario where 17 people
who live alone, in the suburban area of Milan, have been monitored over a period of
almost 2 years. The dataset was completely unlabelled making the initial problem
defined in a completely unsupervised setting.

In this work, to cope with this problem, a specific processing pipeline has been
designed. The event object, opportunely defined according to a vector of features,
is firstly filtered through an "Events-filter" structure based on Gas Growing Neural
Network clustering technique. The events kept by the filter (recurrent events) are
used to calculate a probability density function and the related anomaly score.
Through a dynamic assignation, a threshold on the anomaly score is computed in
respect to an α parameter manually chosen by the user. The event is considered
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anomalous if its anomaly score is below such threshold. Beyond the definition of
this anomaly detection procedure, in this thesis a set of tests have been designed
to assess the confidence of our system.

At first type of tests, "Reliability tests" shows quite good performances in term of
True Negative Rate and True Positive Rate in respect to duration and occurrence
analyses. Such rates have been evaluated separately considering in the first case
(True Negative Rate) recurrent events filtered through filtering process, in second
case (True Positive Rate), anomalous events artificially generated.
As a general trend it is possible to state that very good performances are achieved
in both the cases. The poorest performances have been obtained for each patient in
respect to activity 7, i.e. "Permanence Outside" due to the fact that such activity
presents the lowest amount of events with a possible impact on the adaptability of
Gas Growing Neural Network as well as on the capacity of extrapolating reliable
statistics. Moreover, it has been shown that the α parameter has a direct depen-
dence of the True negative rate enabling the possibility of tuning the system by the
user side.

The second type of tests, "Adaptability tests", has demonstrated the capacity
of the proposed architecture to adapt to the user’s habit in respect to different
situations (high duration test, high occurrence test, range duration test, Multi
Patient Test).

The software has been implemented in Python language and has been released to
the Service Care Provider to be directly applied in a real context. Nonetheless, some
other tests should be addressed. A possible future work consists in performing very
similar analysis also considering a different data-set generated in a monitored Smart
Home Scenario where a basic labeling has been performed. A possible solution
in this sense can derive from the datasets cited in the section 2.2 or through a
generation of synthetic data through simulator. Beyond being useful to validate
our procedure, this can represent a valid solution to tune in a precise manner some
hyper-parameters that have not been adjusted in our analysis as, for example, the
parameters of the Gas Neural Network.
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7
Appendix

7.1 Results for High Duration Analysis

Figure 7.1:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 22consideringallthepatients

Figure 7.2:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 22excludingpatient585and563
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Figure 7.3:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 16

Figure 7.4:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 19

Figure 7.5:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 7

Figure 7.6:Adaptabilityinrespectto”highdurationtest”;Resultsfor
activitya = 17

68



7.2 Results for High Occurrence Analysis

Figure 7.7:Adaptabilityinrespectto”highoccurrencetest”;Results
foractivitya = 17

Figure 7.8:Adaptabilityinrespect”highoccurrencetest”;Resultsfor
activitya = 22

Figure 7.9:Adaptabilityinrespectto”highoccurrencetest”;Results
foractivitya = 19

Figure 7.10:Adaptabilityinrespect”highoccurrencetest”;Results
foractivitya = 16
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